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Abstract
Optical hybrid entanglement can be created between two qubits, one encoded in a single photon
and another one in coherent states with opposite phases. It opens the path to a variety of quantum
technologies, such as heterogeneous quantum networks, merging continuous- and
discrete-variable encoding, and enabling the transport and interconversion of information.
However, reliable characterization of the non-local nature of this quantum state is limited
so far to full quantum state tomography. Here, we perform a thorough study of
Clauser–Horne–Shimony–Holt Bell inequality tests, enabling practical verification of quantum
nonlocality for optical hybrid entanglement. We show that a practical violation of this inequality is
possible with simple photon number on/off measurements if detection efficiencies stay above 82%.
Another approach, based on photon-number parity measurements, requires 94% efficiency but
works well in the limit of higher photon populations. Both tests use no postselection of the
measurement outcomes and they are free of the fair-sampling hypothesis. Our proposal paves the
way to performing loophole-free tests using feasible experimental tasks such as coherent state
interference and photon counting.

1. Introduction

Optical hybrid entanglement is a form of quantum correlations that embodies the original Schrödinger’s
Gedankenexperiment [1] by replacing the cat with a classical light beam, i.e. a single photon is entangled with
a coherent light [2–5]. It may become a key asset in resource-efficient quantum computation [6], quantum
key distribution [7–9], and quantum buses [10, 11]; it has already been employed in complex protocols
which paved the way to building heterogeneous quantum network capabilities, e.g. entanglement swapping
and a quantum-bit encoding converter [12, 13]. Furthermore, it was used to probe fundamental limits of
quantum theory [14, 15], studying hybrid discrete- (DV) and continuous-variable (CV) quantum
information [5, 16], and the information capacity of a photonic state [17].

Quantum technologies often require testing for quantum nonlocality in underlying resources. While
these tests have been accomplished for two-mode CV states [18], this task becomes particularly challenging
when dealing with optical hybrid entanglement. Its dual DV–CV nature implies that Bell nonlocality tests
based on hybrid measurement strategies should be optimal. They involve a binary observable measured on
the single photon mode and one with a continuous spectrum on the other mode. However, since
implementing random Bell test settings in the photon number basis is not experimentally possible, strategies
harnessing general qubit measurements are impractical. More universal approaches often employ
coarse-graining of detection outcomes for multiphoton entanglement, which can impair Bell nonlocality
tests [19, 20]. Moreover, hybrid quantum states decohere exponentially fast with the increasing photon
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population of the classical light wave [16, 21, 22]. Therefore, how to design a nonlocality test for hybrid
entanglement that can be set up in a laboratory, remains an open question.

Until now, nonlocality tests based on quantum steering inequality [23] and several strategies based on the
Clauser–Horne–Shimony–Holt (CHSH) Bell inequality [24] have been outlined. In [25], the nonlocality of
hybrid entanglement was tested with displaced parity measurements on both modes. A hybrid detection
strategy was also discussed where the measurement on DV mode was replaced with a general qubit
measurement. These tests need detection efficiencies of at least 90%. In [26], two hybrid strategies were
considered, that involved either displaced parity or displaced on/off measurements. There, the minimal
required detection efficiency is 83% for the former, and 63% for the latter test, respectively. However,
performing a qubit rotation in the photon-number basis is currently challenging.

Other optical hybrid Bell nonlocality tests, e.g. hybrid polarization entanglement [27], can serve as a
guideline. Although this state is physically different from the photon-number entanglement we consider, it
shows mathematical similarities. The hybrid nonlocality testing strategies proposed for it involve displaced
parity and displaced on/off measurements for the CV mode and a generalized polarization measurement for
the DV mode. Albeit they can be implemented with polarizers and photon-number-resolving (PNR)
detection of efficiencies higher than 82%, these Bell tests have not been performed yet.

Here, we perform a thorough analytical and numerical study of two practical CHSH Bell inequality tests
possessing a high potential to achieve feasible verification of quantum nonlocality for the optical hybrid
entanglement. They can be implemented in an experimental setup, where each mode interferes with a
coherent field followed by on/off or parity measurements, realized by means of e.g. PNR detectors [28]. We
show that the first test can achieve the inequality violation for detection efficiencies higher than 82% and
amplitudes of the CV mode below 1.2. In the ideal, lossless conditions, this test would allow for a violation of
up to 2.71. In contrast, the latter measurement scheme works with higher amplitudes but also sets higher
requirements for system efficiencies, which must stay above 94%. This renders it less practical. Finally, for
comparison, we also consider hybrid tests, modified for general qubit measurements, and show that in
theory, this flavor of hybrid entanglement can maximally violate the CHSH Bell inequality. All the analyzed
measurement schemes do not involve postselection and therefore, they have the capability to keep the
detection loophole closed.

This paper is organized as follows. Section 2 briefly discusses the definition of optical hybrid
entanglement state as considered in this study as well as its basic properties. In section 3 we introduce a
general Bell test design based on the CHSH Bell inequality, including the experimental setup, model of losses
used, and the theoretical background. Next, in section 4 we present and discuss numerical results obtained
by applying various measurement schemes for the nonlocality tests. Section 5 is devoted to an outlook and
conclusions.

2. Optical hybrid entanglement

Let us consider the following hybrid entanglement state that was recently generated [3] and subsequently
used in various protocols [12, 13, 29, 30]

|Ψ⟩= 1√
2

(
|0⟩A|cat−⟩B + |1⟩A|cat+⟩B

)
. (1)

In mode A, a discrete-variable qubit is encoded in photon-number states |0⟩ and |1⟩—the vacuum and
single-photon Fock state, respectively. The qubit is entangled with mode B that carries two mutually
orthogonal continuous-variable states, |cat−⟩ and |cat+⟩. Both of them are superpositions of coherent states
of the same amplitude but opposite phases

|cat±⟩= 1

N±
(|γ⟩± |− γ⟩) , (2)

where N± =
√
2(1± e−2|γ|2) is the normalization constant and |γ⟩= e−

|γ|2
2
∑∞

n=0
γn
√
n!
|n⟩ is a coherent state.

States |cat±⟩ are orthogonal, ⟨cat+|cat−⟩= 0, which stems from the fact that |cat+⟩ carries only even
photon-number components while |cat−⟩ only odd ones. This property works as a hint that PNR-based
measurement schemes could be the best suited for their discrimination.

Full characterization of |Ψ⟩ was realized using efficient quantum state tomography [3] and quantum
steering tests were also performed [23]. However, a full nonlocality test has not been carried out yet.
Interestingly, in the limit of γ→ 0, |Ψ⟩ tends to the single-photon entanglement 1√

2

(
|0⟩|1⟩− |1⟩|0⟩

)
. Also in

this case verification of nonlocality in |Ψ⟩ is conceptually challenging and it has generated a lot of attention
[31–36].
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3. General Bell test design for optical hybrid entanglement

Verification of quantum nonlocality requires designing a viable Bell test. This task is quantum state-specific
[37, 38] as universal methods for finding a well-matched one are not known. Moreover, experimental
implementations of Bell tests are limited by the number of accessible measurement strategies, which in the
case of photonic setups comprise polarization rotations, displacement operations, homodyne, and detectors
of high efficiency, e.g. superconducting nanowires [39] or transition-edge sensors [40]. Furthermore, within
the current state of the art, the implementation of rotations in the Fock state basis, which will result in the
creation of superpositions of states with different photon numbers, is challenging.

The CHSH Bell inequality, which facilitated the first loophole-free Bell tests [41, 42], takes the form

S= ⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩− ⟨A2B2⟩⩽ 2, (3)

where Ai (Bi), for i = 1,2, are binary observables of values±1, measured on mode A (B). It was successful
because of its robustness against noise and errors in experimental settings. Quantum correlations allow S to
achieve values up to 2

√
2≈ 2.83 and subsequently violate inequality (3). Thus, observing CHSH values

clearly crossing the classical boundary of 2 is the goal of any practical test.
We propose to employ the CHSH inequality and either on/off or parity measurements for testing the

nonlocality in the optical hybrid entanglement state. In figure 1(a), two modes of the shared state |Ψ⟩ are
locally interfered with coherent fields, |α⟩ and |β⟩, followed by measurements of efficiency 0< ηa,b ⩽ 1. The
variable beam splitters’ reflectivities ra and rb act as the Bell test settings. The registered readouts k and l are
then coarse-grained into two sets, either zero/non-zero or even/odd numbers of photons (sections 4.1
and 4.2).

This design builds on a group theory result that maps two-mode Fock states |n⟩|Σ− n⟩ to Dicke spin-Σ2
states with component Sz=

Σ
2 −n, by means of the Schwinger representation [43]. Next, we observe that any

arbitrary rotation of Sz-spin component encoded in a product of Fock states is easily implemented using
Fock state interference on a beam splitter [44]. Reflectivities set the spin rotation angles. We also note the fact
that testing the nonlocality in photon-number correlations requires erasing ‘how-many-photons’
information before taking measurements. This step requires that we locally interfere each mode of the
photon-number entangled state with a quantum superposition of indefinite number of photons, e.g. a
coherent state, not merely with a Fock state. Effectively, if we examine this interference in the Fock state basis,
it will amount not only to the spin rotation, but also to varying the spin value Σ

2 each time the measurements
are taken. In this way, in the Bell test, we no longer need to perform rotations directly in the Fock state basis,
but we carry out rotations of a spin that fluctuates in length instead. These Bell tests can detect nonlocality in
a wide class of bipartite entanglement: squeezed vacuum, single-photon entanglement, entangled coherent
states, and generalized Holland–Burnett states [25, 45–50].

In figure 1(b) we further modify the setup from figure 1(a) for generalized qubit measurements in mode
A. The goal is to see how much improvement such a test can offer (sections 4.3 and 4.4). To this end, we
assume that the above-mentioned rotations are experimentally feasible.

To investigate the collective effect of losses in the state generation, transmission, and imperfect detection
in full optical tests, we model them with a beam splitter of transmitivity ηa,b inserted in front of each
detector. In hybrid Bell tests, we avoid the post-selection loophole by assigning the value+1 to the
measurement outcome of observable Ai if a ‘no-detection’ event in mode A occurs, i.e. the effective
observable could be written as Aeff

i = ηAi +(1− η)1, where 1 denotes the identity operator.
We also notice that for the homodyne limit (HD), characterized by very small reflectivities, ra, rb → 0, and

large amplitudes of the coherent fields, |α|2, |β|2 →∞, the beam splitter interference may be approximated
with displacement operators D(δα,β) with δα =−iα

√
ra and δβ =−iβ

√
rb [51, 52]. In this case, these

displacements become the measurement settings. However, in this limit, the photon population of the local
oscillators is several orders of magnitude larger than that of the measured state, |α|2, |β|2 ≫ |γ|2, which may
pose additional experimental challenges, e.g. the PNR detection of large photon numbers [51, 53].

Details of analytical derivations and numerical methods used for obtaining the results are presented in
sections 4.1–4.4 are given in the supplementary material.

4. Results

4.1. CHSH test with on/off measurements
The first CHSH Bell test that we will outline is based on the scheme shown in figure 1(a), where the detection
outcomes k and l are split into four sets according to the vacuum and non-vacuum events registered in

3
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Figure 1. Nonlocality Bell tests for an optical hybrid bipartite photon-number entanglement state |Ψ⟩, as defined in equation (1).
(a) Two modes of the state are locally interfered with coherent fields, |α⟩ and |β⟩, followed by measurements of efficiency ηa and
ηb. Here, the variable beam splitters’ reflectivities ra and rb act as the Bell test settings. The registered readouts k and l are
coarse-grained into the binary outcomes of on/off or even/odd measurements used in the CHSH Bell inequality (3). (b) Tests
with hybrid measurement strategy, where a measurement on mode A is replaced by a general qubit measurement.

Figure 2. Violation of the CHSH inequality with on/off measurements computed for the hybrid entanglement state |Ψ⟩, as a
function of the amplitude γ of the state |cat±⟩. (a) Equal detection efficiencies in both arms, ηa = ηb, solid lines for α= β = 2,
and dashed lines in the homodyne limit. (b) Fixed qubit detection efficiency, ηa = 0.9, solid lines for α= β = 2, and dashed lines
in the homodyne limit. The bold isoline corresponds to S= 2, and each consecutive isoline, respectively, entails a 0.1 increase in
the CHSH violation.

modes A and B, {(k=0, l=0),(k=0, l̸=0),(k ̸=0, l=0),(k ̸=0, l ̸=0)}; they correspond to the binary
measurement outcomes {(+1,+1),(+1,−1),(−1,+1),(−1,−1)} assigned to A and B, respectively. The
on/off measurement operator takes the form

Πon/off = |0⟩⟨0| −
∞∑
n=1

|n⟩⟨n|= 2|0⟩⟨0| −1. (4)

We would like to emphasize that Πon/off describes solely the detection, not the observable employed in the
Bell test. It is challenging to concisely analytically express a single observable Ai (or Bj) and to reveal its
dependence on the settings of the Bell test (ra and rb), but we can write down explicitly the correlation
function between these observables as follows

⟨AiBj⟩= Tr
{
Π

(A)
on/offΠ

(B)
on/offTrc,d

[
UBS (rai) UBS

(
rbj
)
ρΨ ρα ρβ U†

BS

(
rbj
)
U†
BS (rai)

]
Π

(B)†

on/offΠ
(A)†

on/off

}
, (5)

where ρΨ = |Ψ⟩⟨Ψ|, ρα and ρβ are the coherent states |α⟩ and |β⟩. The action of a beam splitter is described

by the unitary UBS(r) = e−iµ(a†b−ab†), where µ= 2arcsin
√
r, r is the beam splitter reflectivity and a,b denote

the annihilation operators of interfering modes.
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To compute the maximal value of parameter S and achieve the CHSH inequality violation for given γ and
detection efficiencies ηa,b, we numerically optimize equation (3) with the correlation functions given by
equation (5), with respect to the Bell test settings ra1,2 , rb1,2 for given parameters α,β. Next, we optimize the
amplitudes α,β to obtain the minimal detection efficiencies ηa,b required for the violation. Numerical
optimization is simplified by using the real domain for parameters γ, α and β. This approach is viable as
phases can be aligned in the experimental implementation.

The results for the on/off measurements are depicted in figure 2. In panel (a) we set equal detection
efficiencies ηa=ηb and fix the parameters α=β=2 for solid lines. In the limit γ→ 0 and perfect detection
(ηa,b = 1) we obtain S= 2.57. The value of S gradually drops for higher γ and reaches the boundary S= 2 for
γ= 0.8, because the odds of spotting the zero-photon measurement quickly vanishes for highly-occupied
states. Observing Bell inequality violation becomes also impossible below ηa=ηb = 0.87. For comparison,
when we set higher α=β=10, in the limit γ→ 0 and perfect detection we obtain maximum violation of
S= 2.68.

The computation results for the homodyne limit are shown by the dashed lines in figure 2(a). We first
derived an analytical formula for correlation functions and then numerically maximized the S with respect to
the Bell test settings δα1,2 , δβ1,2 . We found that in this case, the CHSH violation is higher than the solid lines,
and it is also observed for a wider span of γ. Furthermore, the maximum value of the violation increases to
S= 2.71 for γ= 0.4 and for the settings δα1 = 0.18, δα2 =−0.56, δβ1 = 0.17, δβ2 =−0.61, and the
minimum efficiency that still provides violation is ηa,b = 0.82 for γ= 0.6.

Next, we studied the interplay between the minimal requirements for unequal detection efficiencies. The
solid lines in figure 2(b) show the violations achieved for fixed qubit detection efficiency, ηa=0.9 and
α=β=2. They are observed for γ<0.75 and ηb>0.83. This gain comes at the expense of lowering the value
of maximal violation to S=2.35.

The dashed lines in figure 2(b) display the CHSH violation for ηa = 0.9 in the homodyne limit. Here, the
maximal achieved value is higher than solid lines, reaching S= 2.5 for γ= 0.42, and the minimal efficiency
that still provides violation gets to ηb = 0.73 for γ= 0.63.

In summary, our results show that significant CHSH violations can be achieved for hybrid entanglement
state when performing on/off measurements. Notably, such violations can be reached even when the
intensity of the local coherent state is comparable to the photonic occupation of the state under study. We
also calculated how S increases in the homodyne limit and showed that we can reach a higher violation in
this limit.

4.2. CHSH test with parity measurements
Let us now perform coarse-graining of the measurement results from figure 1(a) by assigning+1 to the
detection of even numbers of photons (k= even or l= even), and -1 to the detection of odd numbers of
photons (k= odd or l= odd). This strategy mimics the use of parity measurements on modes A and B with

Πparity =
∞∑
n=0

(−1)n |n⟩⟨n| . (6)

Following the steps described in section 4.1, we numerically optimize the CHSH value S in equation (3) with
correlations computed using equation (5) but replacing the operator Πon/off with Πparity from equation (6).

The results for the parity measurement are shown in figure 3. Panel (a) depicts computations for equal
efficiences ηa=ηb. Here the α=β=1 case is shown by the solid lines and provides us with the minimum
ηa,b=0.96 for which we see the violation. We find that the maximal CHSH value increases from S=2.17 for
γ→ 0 to S=2.24 for γ=2. We note that these measurements allow us to observe violation for larger
amplitudes of γ than with on/off measurements. In fact, with this measurement, one could get S>2 for
η→ 1 independently of γ, unlike for the on/off case, where γ was limited. However, parity measurements, in
general, require higher detection efficiencies, because losing a photon can turn an even number of photons
into an odd one, and vice versa. The results corresponding to the homodyne limit are represented by dashed
lines. In this case, the violation of S=2.39 is achieved for γ=2 and it will increase to maximum violation of
S=2.44 for γ →∞. However, it very quickly degrades with losses. The lowest efficiency for which S>2 is
ηa,b=0.94 for γ=0.54.

Figure 3(b) shows computations for ηa=0.95, which is almost the minimum required efficiency for
achieving CHSH violation. Here, the solid lines correspond to α=β=1, and S=2.14 is reached for γ=2.
A value of ηb required to witness any violation is ηb=0.96 for γ=0.5. In the homodyne limit (dashed lines),
the violation of S=2.29 is attained for γ=2 which increased to S=2.34 for γ →∞, and S> 2 is reached for
minimum ηb = 0.93 at γ=0.5.
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Figure 3. Violation of the CHSH inequality with parity measurements computed for the hybrid entanglement state |Ψ⟩, as a
function of the amplitude γ of the state |cat±⟩. (a) Equal detection efficiencies in both arms, ηa = ηb, solid lines for α= β = 1,
and dashed lines in the homodyne limit. (b) Fixed qubit detection efficiency, ηa = 0.95, solid lines for α= β = 1, and dashed
lines in the homodyne limit. The bold isoline corresponds to S= 2, and each consecutive isoline, respectively, entails a 0.05
increase in the CHSH violation.

Figure 4. Violation of the hybrid CHSH Bell test with on/off hybrid measurements computed for the hybrid entanglement state
|Ψ⟩, as a function of the amplitude γ of the state |cat±⟩. (a) Equal detection efficiencies in both arms, ηa = ηb, solid lines for
α= β = 2, and dashed lines in the homodyne limit. (b) Fixed qubit detection efficiency, ηa = 0.9, solid lines for α= β = 2, and
dashed lines in the homodyne limit. The bold isoline corresponds to S= 2, and each consecutive isoline, respectively, entails a 0.1
increase in the CHSH violation.

Our results show that CHSH violations can also be achieved for hybrid entanglement state when
performing parity measurements. The magnitudes of the violations are lower than in the on/off case, and
require better detection efficiencies, but can be observed at larger values of the amplitude γ. In both cases,
the ideal setting which gave us the maximum violation happens in the homodyne limit.

4.3. Hybrid CHSH test with on/off measurements
Another strategy linked to the specific nature of the considered state is to perform the hybrid Bell test shown
in figure 1(b). In this design, a general qubit measurement is performed on the single-photon subsystem,
while on/off measurements, equation (4), are applied to mode B. Every qubit observable can be described in
terms of Pauli operators σX , σY , and σZ [54]

Aj = sinθj cosϕjσX + sinθj sinϕjσY + cosθjσZ, (7)

where j = 1,2 correspond to two measurement settings used in mode A in the test.
We follow the steps described in section 4.1 for the optimization of the CHSH value with the on/off

measurements, but we apply the observable defined equation (7) in mode A. The results, depicted by solid
lines in figure 4(a), are computed for α=β=2 and ηa=ηb. Here, S=2.72 is achieved for γ→ 0, but CHSH
violation is reached only for ηa,b⩾0.82. The range for which the violation can be observed is bounded by
γ=0.88. Solid lines in figure 4(b) display ηa = 0.9 for α=β=2, for which the maximal violation is S=2.54
but the minimal efficiency needed for the violation drops to ηb=0.77.

In the homodyne limit, the minimal required detection efficiency to observe any CHSH inequality
violation is ηa,b=0.8, shown by dashed lines in figure 4(a). The highest violation of S=2

√
2≈ 2.83 is

6
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Figure 5. Violation of the hybrid CHSH Bell test with parity measurements computed for the hybrid entanglement state |Ψ⟩, as a
function of the amplitude γ of the state |cat±⟩. (a) Equal detection efficiencies in both arms, ηa = ηb, solid lines for α= β = 1,
and dashed lines in the homodyne limit. (b) Fixed qubit detection efficiency, ηa = 0.95, solid lines for α= β = 1, and dashed
lines in the homodyne limit. The bold isoline corresponds to S= 2, and each consecutive isoline, respectively, entails a 0.05
increase in the CHSH violation.

obtained for γ =
√
ln2/2≈ 0.42. For ηa=0.9, dashed lines in figure 4(b), the minimal ηb equals 0.65 and

the maximal violation is S= 2.55.
The maximal violation, depicted with the dashed lines in figure 4(a), can be additionally shown

analytically using the CHSH rigidity theorem. This theorem states that if a quantum state maximally violates
the CHSH inequality, it is equivalent to the maximally entangled Bell pair 1√

2

(
|0⟩|0⟩+ |1⟩|1⟩

)
, while the

measurements used are equivalent to the canonical qubit measurements A1 = σZ, A2 = σX, B1 =
1√
2
(σZ +σX), B2 =

1√
2
(σZ −σX) [55, 56]. This prerequisite is fulfilled by |Ψ⟩, because equation (1) already

possesses the form of a Bell pair. Orthonormal states |e0⟩= |cat−⟩ and |e1⟩= |cat+⟩ can be considered as two
states of a multiphoton qubit, but they must be complemented by an arbitrary set of orthonormal |ei⟩ where
i ⩾ 2 to form the full basis in an infinite-dimensional Hilbert space.

In order to analytically investigate this theorem, let us take A1 = σZ and A2 = σX, as well as δβ1,2 =±γ.
With regards to the measurement operators acting on mode B, we note that in the homodyne limit they can
be expressed as Bj = D(δβj)Πon/offD†(δβj) = 2|δβj⟩⟨δβj | −1, j = 1,2. In the basis |ei⟩, they have the following
form

Bj = B̃j ⊕−1, (8a)

B̃j = (−1)j−1
√
1− e−4γ2 σX + e−2γ2

σZ, (8b)

where j = 1,2. The supplementary material details the full proof.
Now, when we substitute γ = 1

2

√
ln2≈ 0.42, then B1=

1√
2
(σZ +σX) and B2=

1√
2
(σZ −σX) and the

maximal violation of the CHSH inequality S= 2
√
2 can be observed, thus proving the CHSH rigidity for the

optical hybrid entanglement. This stays in agreement with [57].
In summary, the hybrid Bell test, in which a general qubit measurement is performed on mode A while

mode B is tested with on/off measurements, allows one to achieve higher CHSH inequality violations
compared to the case where on/off measurements are performed on both modes. Furthermore, in the
homodyne limit, this approach allows one to observe the maximal CHSH violation of 2

√
2 for the hybrid

entanglement, showing that this state is equivalent to the maximally entangled Bell pair.

4.4. Hybrid CHSH test with parity measurements
Lastly, we consider a hybrid test in which general qubit measurements, equation (7), are performed on mode
A, and the parity measurements, equation (6), on mode B. Numerical computations follow the steps from
section 4.3.

The results, displayed with solid lines in figure 5(a), are computed for α=β=1 and ηa=ηb. Here, the
maximum violation reaches S=2.62 for γ=2 and drops to S=2 for ηa,b = 0.91 and γ=0.6. In the case of
ηb = 0.95, computed for α=β=1 (solid lines in panel (b)), the maximal violation of S=2.52 is reached for
γ=2. The CHSH inequality is minimally violated for ηb=0.87 for γ=0.45.

In the homodyne limit, the CHSH parameter computed for ηa=ηb reaches S=2.77 for γ=2, shown by
dashed lines in panel (a). The minimum required efficiency is ηa=ηb>0.88 for γ=0.47. For ηa=0.95,
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dashed lines in panel (b), minimal required ηb>0.82 for γ=0.37, while S takes the maximal value of 2.69 for
γ →∞. The CHSH inequality in this case also is maximally violated for γ →∞ and ηa,b → 1, which can be
proved analytically. In this limit, ⟨−γ|γ⟩= 0 and observables B1 and B2 become

Bj = e−2|δj|2
(
cosφjσZ − sinφjσY

)
, (9)

where φj = 4γ Im(δj) and j = 1,2. Then, by substituting δβ1,2 =±iπ/16γ one gets B1 =
1√
2
(σZ −σY) and

B2 =
1√
2
(σZ +σY), which are the canonical measurements up to a rotation in the X–Y plane. The CHSH

inequality can be maximally violated, S= 2
√
2, for A1 = σZ,A2 = σY.

To sum up this case, in analogy to section 4.3, the hybrid CHSH test with parity measurements allows
one to achieve higher CHSH Bell inequality violations than the test using parity measurements in both
modes, at the expense of the feasibility of the experimental scheme. It also allows one to obtain the maximal
violation for a specific set of system parameters.

5. Discussion and conclusion

We have demonstrated that the nonlocality in an optical hybrid entanglement state can be experimentally
confirmed by violating the CHSH Bell inequality. In the test, each mode of |Ψ⟩, equation (1), interferes with
a local coherent state |α⟩ and |β⟩, respectively, on variable beam splitters of reflectivities ra and rb, and
subsequently measured. While ra,b act as the Bell test settings, splitting the detection outcomes into two sets
of zero and non-zero or even/odd numbers of photons allows us to realize binary measurements. This test
requires small fine-tuned beam splitter reflectivities. Although the proposed test is challenging to implement
due to inevitable losses in the optical paths and imperfect detection, it is within reach of current detection
technology. There is a strong ongoing effort to develop highly efficient photon number resolution with
superconducting-nanowire detectors or transition-edge sensors [39, 40, 58–67]. Indeed, efficiencies up to
98% with a photon-resolving power of up to 7 photons were reported for transition-edge-sensors (TES)
[58]. This puts a limit on the combinations of γ,α,β, and r that can be used in the current proposal and
indeed cover most of the cases highlighted in figures 2 and 3.

For the non-homodyne limit with α= β = 2 our result is depicted by solid lines in figure 2. Here,
significant CHSH Bell inequality violations, up to S= 2.57, are demonstrated for hybrid entangled state |Ψ⟩
with amplitudes γ < 0.81, and on/off measurements with detection efficiencies above 0.87. By increasing the
value of α,β the optimal Bell value also increases.

Our main result is shown by dashed lines in figure 2, computed for the same on/off measurement but this
time in the homodyne limit, i.e. ra,b → 0 and α,β →∞, where the local interferences of |Ψ⟩ with coherent
states amount to displacement operations [52]. Here we observe Bell violations, up to S= 2.71 in ideal
circumstances, which are demonstrated for states with amplitudes γ < 1.25, and on/off measurements with
detection efficiencies above 0.82. For example for γ= 0.44 and efficiencies ηa,b ⩾ 0.95, it gave the Bell
violation of S= 2.51.

In figure 3 we present the result for parity measurement. In the ideal lossless conditions, this allows one
to perform the even/odd Bell test for arbitrarily large amplitude γ, reaching the maximal value of S= 2.44.
However, this measurement is quickly spoiled by losses that remove photons from the state and so these
violations are very fragile and vanish quickly by experimental imperfections, e.g. when detection efficiencies
drop below 0.96 for α=β=1. We note that current PNR capabilities will also be a limiting factor in the case
of the homodyne limit.

The results presented in figures 4 and 5 are interesting for studying the nonlocality in the hybrid
entanglement state. We enhanced our two measurement strategies with a general qubit measurement
performed in the single-photon subsystem. This allowed us to maximally violate the CHSH inequality, up to
S= 2

√
2. For example, it lets us decrease the required minimal efficiency of the measurement in the on/off

test to ηa,b ⩾ 0.8 and in the parity test to ηa,b > 0.88. An interesting observation in this context is that when
employing the photon counting Bell test on the maximally entangled states in (1), CHSH violation can be
achieved even when the efficiency is below the Eberhard limit [68] (i.e. for η < 2

√
2− 2≈ 0.83). This is

because, in contrast to conventional Bell tests, the losses of photons are considered as an output in our Bell
test scenario which makes it more robust to the losses.

Our numerical computations are summarised in figure 6, where we show a comparison of the thresholds
above which CHSH violation occurs, as a function of both the detection efficiency, as well as the
amplitude γ. Panel (a) displays the lines obtained when the local interference is done with a coherent state
with finite intensity, while in panel (b) we show the counterpart in the homodyne limit. In both cases, we
find that on/off measurements are more robust to imperfect detection and transmission losses, while parity
measurements allow violations for higher values of γ. Moreover, regardless of the type of measurement, the

8
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Figure 6. Comparison of nonlocality CHSH Bell tests for optical photon-number hybrid entanglement state, equation (1), with
various detection strategies: on/off (blue lines) and parity (red lines) with full optical (solid lines) and hybrid (dashed lines)
measurements. We assume all the measurement devices to be equally efficient, ηa = ηb. The various lines correspond to the
thresholds above which CHSH violation is observed when the local interferences (a) have finite intensity and (b) are in the
homodyne limit; i.e. the lines are the S= 2 isolines from panels (a) of figures 2–5, respectively.

hybrid strategies provide a clear enhancement of the results, lowering the efficiency required to observe
CHSH violations. The Supplemental Material includes a table with all the detailed results of the
computations.

Our results give interesting insights from both fundamental and technological standpoints. They show
ways to study the quantum nonlocality of optical hybrid entangled states, as well as of more general complex
bipartite entanglement merging the CV and DV realms.
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spatially separated modes lead to a violation of Bell inequality via weak-field homodyne measurements? New J. Phys. 23 073042
[34] Das T, Karczewski M, Mandarino A, Markiewicz M, Woloncewicz B and Żukowski M 2022 Remarks about Bell-nonclassicality of a
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[48] Jeong H, Son W, Kim M S, Ahn D and Brukner Č 2003 Quantum nonlocality test for continuous-variable states with dichotomic

observables Phys. Rev. A 67 012106
[49] Lee S-W and Jeong H 2011 High-dimensional Bell test for a continuous-variable state in phase space and its robustness to

detection inefficiency Phys. Rev. A 83 022103
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