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Photon correlations, as measured by Glauber’s nth-order coherence functions g™, are highly sought to
be minimized and/or maximized. In systems that are coherently driven, so-called blockades can give rise to
strong correlations according to two scenarios based on level repulsion (conventional blockade) or interferences
(unconventional blockade). Here, we show how these two approaches relate to the admixing of a coherent state
with a quantum state such as a squeezed state for the simplest and most recurrent case. The emission from a
variety of systems, such as resonance fluorescence, the Jaynes-Cummings model, or microcavity polaritons, as a
few examples of a large family of quantum optical sources, are shown to be particular cases of such admixtures,
that can further be doctored up externally by adding an amplitude- and phase-controlled coherent field with the
effect of tuning the photon statistics from exactly zero to infinity. We show how such an understanding also
allows to classify photon statistics throughout platforms according to conventional and unconventional features,
with the effect of optimizing the correlations and with possible spectroscopic applications. In particular, we
show how configurations that can realize simultaneously conventional and unconventional antibunching bring
the best of both worlds: huge antibunching (unconventional) with large populations and being robust to dephasing

1,3,8§

(conventional).
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I. INTRODUCTION

That the sum (or superposition) of two fields does not
simply add their respective intensities but introduce an in-
terference term is the basic principle of optics and other
wave theories [1]. In this text, we study the impact that
such interferences have on the quantum-optical aspect of
light. Since quantum optics typically deals with correlations
between photons, our concern is primarily with the photon
statistics of interfering fields [2]. The effect of interferences on
photon statistics has been previously studied in the literature,
both past and recent [3-8] but its ubiquity in a wealth of
physical systems has been greatly overlooked. In particular,
it appears to be central in coherently driven systems, even
when one is not directly controlling the phase and amplitude
of the coherent field with the aim of interfering it with its
quantum counterpart. The problem was first considered in
this form by Vogel [9,10] to bring to the quantum realm
the signal-engineering technique of homodyning, namely, to
extract squeezing (rather than phase modulation in the clas-
sical case). In fact, a related case when the coherent field
interferes with a quantum field that it generates as the result of
driving a quantum emitter, had been previously introduced by
Carmichael under the apt denomination of “self-homodyning”
[11]. The technique has been lately championed in a recent
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series of works from the Vuckovi¢ group [12-16] and a recent
work controlled the interference to tune the photon statistics
[17]. The problem is so widespread, often in disguise, that
even a brief overview of its occurrences and its identification
throughout platforms and realizations, takes the character of
a self-contained review [18], to which we refer for further
discussion of the literature. Here, we consider mainly the case
of mixing a squeezed state with a coherent field, as this is
the most common configuration, although the general case is
clearly also of fundamental interest [19-22].

II. HOMODYNING A QUANTUM FIELD

A simple but powerful decomposition in quantum field
theory separates the mean field o = (s) from the quantum
fluctuations € = s — (s) of a quantum field s, which is recov-
ered by bringing these two components together [23]:

s=a-+e. (1

Note that €, like s, is an operator, and thus describes a quantum
field. In contrast, o is a ¢ number, and describes a classical
field. This decomposition is sketched in Fig. 1(a). This trivial
mathematical fact, to which theorists recourse to treat the
two components separately, can be in essence realized in a
physical setting for instance by using a beam splitter (BS),
i.e., a two-inputs (a, d), two-outputs (o, s) linear and unitary
transformation which, for optical fields, and assuming a trans-
mittance T? and reflectance R2, reads as [24]

()G &) >
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FIG. 1. Schemes considered in this text. (a) A quantum field s
can be seen as composed of a classical component (its mean field)
(s) and quantum fluctuations €. (b) By using a beam splitter, a
classical source a can be used to remove the classical component
from a quantum source d resulting in a more quantum output s. The
excess of classical signal is redirected toward the other branch of
the interferometer in o. (c) A particular case of great popularity in
the literature admixes a coherent state |«) to a squeezed state |£),
producing a displaced squeezed thermal state in a density matrix
form py as the other output is discarded (traced over).

with 0 < T,R < 1 and T? + R? = 1. The i term comes from
Stokes’ relations and can be corrected with a half-wave plate,
so that, assuming a balanced beam splitter R =T = 1/ V2, we
can have o = (i/v/2)(—a+d) and s = 1/+/2(a + d), with
the outputs providing an attenuated fraction of the difference
and sum of the two input fields. The phase shift in the
difference could also be removed with another half-wave
plate. The attenuation comes from energy conservation and
the impossibility to amplify faithfully a quantum field. Since
one can, however, amplify faithfully a classical field, then an
amplification by a factor T/R, together with the half-wave
plate phase shift of —i and passing through an unbalanced
beam splitter, returns on the transmitted output the signal
s = T'(a + d) and on the reflected one o = i[Rd — (T?/R)al.
Therefore, in the limit T — 1, which is theoretical only since
this requires infinite amplification, one can recover the sum of
the two fields without attenuation, s = a + d. The other field
then collects the diverging (due to amplification) classical
field alone —i(T/R){c). As this classical field can be dis-
carded without affecting the quantum field, this hypothetical
setup realizes the scheme sketched in Fig. 1(a) by feeding
it with the quantum fluctuations d = € and the mean field
a = (s). In the following, we will exploit such decompositions
as Eq. (1) as well as the possibility to interfere in a beam
splitter a classical source a with a quantum source d, to
similarly collect on the one hand the magnified quantum
character of the quantum source, that is, devoid of its mean
field, that is rerouted, on the other hand, in another channel
which can be traced over. This is sketched in Fig. 1(b). We

have shown for instance how one can collect in this way the
pure quantum emission from a coherently driven two-level
system by destructively interfering its mean field [25]. We
now generalize this scheme to other quantum sources.

Being interested in the s component alone, and in particular
in its quantum averages, to describe the beam-splitter situa-
tion, we perform a binomial expansion on s = Td + iRa and
its conjugate to compute

= 7" Z Z ( ) ( )i""’(R/T)”*"

p=0 g=0
x (a"Pald™ =P gm=ry 3)

(sTn m

which includes the beam-splitting signal reduction as well as
the 7 phase shift for reflection. While those will typically be
present in an actual experiment, they are not so important for
the actual process of interfering (or mixing) the fields and can
be absorbed in an overall leading factor which will, in fact,
cancel in all normalized correlators. This reflects the fact that
photon statistics is not affected by linear processes. In this
case, one can consider directly the correlators that arise from
the simple addition of the fields s = a + d:

s my ZZ( )( ) Ipada(n p)gm— Py, (@)

p=0 ¢=0

Besides, one can assume no correlations between the two in-
puts, so that (a"Pa?d""=P)d"=r) = (a'Pa?)(d""~P)d"™~P) and
since we presently concern ourselves with the case where a
is classical, i.e., with @ = (a), we can further simplify Eq. (4)
into

’rn my ZZ( >< ) *Paq<dT(n—p)dm—q)' (5)

p=0 ¢=0

This yields, as the simplest (n = m = 1) case, the classical
version of interfering fields, that holds at the one-photon level
(in the sense of first-order correlations). Namely, the output
field s sums the intensities of the two fields, plus or minus an
interfering term:

(ny) = (s's) = |a|* +

(n4) + 2 Re[a*(d)]. 6)

So far, this is just a sophisticated way to write one of the most
basic and best-known features of optics: interferences. One
departs from the classical realm in the next orders, with n =
m 2 2. Correlations are typically normalized, which yields
the nth-order photon correlation g™ = (s™s")/(n,)" [26] that
one can write in increasing powers of «, namely,

P =1+L+0 + D, (7a)

=14+ T+ D+ T+ T+ T (7b)
2n—2

8’ =1+ Z K (7¢)

with T, (n,)2, Tm(ns)?, Ku(ng* o¢ ||™. Note that there are
no explicit terms Ko,_1, Ky, (e.g., Z3, Iy for g? and Js5, Js
for g) because, through simplifications, these get absorbed
in the unit term 1, which otherwise comes from the coherent
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field. The noncoherent (quantum) contributions read as, for
g% [9-11,27],

(d2d%) — (d'd)?

PET ®
s/ gt a2y _ gt
7, = 4Relo"(d'd?) — (d'd) ()] (&b)
(n)?
*27 72\71 __ * 2 2791
7, = oRele (d?)] = 2Rela™(d))* + |al*(d'd) 80
(ny)?
and, for g®,
_ (dPd®) — (d"d)’
TR EI (9a)
%07 712 73\ +
7 = gRel (d™d?) : (d)d'd)] ©b)
(n)
Jp = 32Re[a**(dd*)] + |a?(3(d?d%) + (d'd)?)
— 4(d"d) Re[a* (d)1*]/ (ns)°, (9¢)
Js = 2[Re[a*(d*)] + |a|*Re[a*(9(d"d?) — 6(d)(d"d))]
— 4 Re[a*(d) 1’1/ (n)°, (9d)
%27 72 2797 _ * 2
A =6|0[|2Re[ot (d?)] + || (d'd) — 2 Re[a*(d)] . %)

()’

It is possible, though not necessary presently, to provide
the higher-order-correlator terms /C,,. In connection of our
coming discussion on squeezing, note that 7, can be rewritten
in terms of the field quadratures:

o = 4fla?(cos® p(:X7:) + sin” ¢ (-]

+ cos ¢ sing ({Xy, Ys})) — Re[a*(d)]*]/ (ns)>. (10)
Here, the notation *: :” indicates normal ordering,
X4, Y} =XaYs + Y4 Xy, and X, = 3 d" +d), Y, =4(d" —d)
are the quadratures of the field described with the annihila-
tion operator d. Such decompositions of the photon statistics
[Egs. (7)] pinpoint which mechanism is at play in account-
ing for the photon correlations. The coefficients Zy and Jp,
for instance, quantify the statistics of the quantum part of
the signal, and through the first term in the numerator, are
basically the Glauber correlators themselves. Z, also bears
some resemblance to Mandel’s Q parameter [28]. Indeed,
when there is no coherence involved and the full signal
is quantum, i.e., when s ~ d, then Zo = ¢g® — 1 and J) =
g® — 1 (and similarly at still higher orders) with all other
Tk, Jx canceling. In this case, the photon statistics can be
fully attributed to the quantum dynamics of the naked emitter.
In other cases, it includes interferences with the coherent
contribution, which are the multiphoton counterpart for the
photon statistics of the usual field (single-photon) interference
[Eq. (6)] for intensities. At the two-photon level, Z, shows
that the interference can be well described through squeezing
of the quantum signal, and we will study exactly this con-
figuration in the next section. At the three-photon level, the
situation becomes more complex with departures from the
exact squeezed and coherent states interference scenario [18],

and we will therefore focus on the simpler, and so far more
popular, case of two-photon statistics. Nevertheless, the same
underlying idea of multiphoton interferences prevails.

We conclude this section with the version of Eqs. (8) which
will be used in the rest of the text, where we shall consider
both the cases where the coherent state is brought externally
to the emitter (homodyning) and the case where the coherent
state is the classical, or mean-field, component of the emitter
itself (self-homodyning). In the latter case, coming back to
Eq. (1), withd = € = s — (s) and a = (s), one finds for the Z
coefficients (the same could be done for 7, etc.)

Ty = [(s"s%) = (s7s)> — 41(s)|* + 6l ()P (ss)

+2Rel(s7) (%) — 245"V (sTs) 11/ (sTs) 2, (11a)

I — 4Re[<ST)(S%S2> = (D2 21) PU{) 1 = (ss)
1 = E ,
(s7s)?

(11b)

Re[(s")? ()] + I {s) I*(s™s) — 2I(s)|*

2 .
(s7s)?

T, — (11c)

III. INTERFERING A SQUEEZED
AND A COHERENT STATE

We now focus on one case of considerable interest, as
it is possibly the most recurring case, although not always
identified as such, namely, when the quantum state is a
squeezed state. Note that a squeezed state has a zero mean,
(d) =0, so it technically qualifies as a fluctuation term in
the sense of Eq. (1). However, since it can be the dominant
term of the total population, we will also refer to it as the
quantum part of the signal. The operators a and d are now
both annihilation operators for bosonic fields, and we define
D,(a) = exp(aa’ — a*a) the displacement operator for the
coherent state |o) = D,(«)|0), with « = |xt|e’® and S, (£) =
exp(3[€d7? — £*d?]) the squeezing operator for the squeezed
state |£) = S;(£)|0), with & = re” the squeezing parameter.
The total input state is then

[¥in) = Da(@)Sa(6)10)das (12)

where the state subscript indicates the input and output sub-
spaces where operators are acting upon, namely, here, in
the input basis. Now, applying the transformation (2) and
rearranging terms, we obtain, first for the displacement op-
erator, D,(a) = exp (0" — ako+ a,st — ats), where a; =
iR and o, = Ta. Exponentials of operators can be factorized
since both outputs are independent from each other and com-
mute. This leads to D,(a) = D,(«,)Ds(cts) = Dy(ag)D,y(aty),
where each displacement operator D;(«;) (j = o, s) only acts
over its assigned output. Second, the squeezing operator in the
output basis reads as

Sq(€) = exp [L(E10® — &,07) + L(E)s* — £sT)
+ (E505 — £,50'sT)] = exp(S, + Sy + S,),  (13)

where & = T?¢, £, = —R?&, and £,, = iRT£. This exponen-
tial can be split into a product, only if [S, + S5, Sss] = O,
which is fulfilled in the particular case of a balanced beam
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splitter T = R. This restriction is, however, not very strin-
gent since its first-order correction grows proportionally to
r>TR(T? — R?). Thus, for either low squeezing signal (r < 1)
or almost symmetrical BS (T — R & 0), the output signal can
still be described as follows. Since the commutator [S,, Ss]
vanishes for all possible values, the exponential simplifies into
Sa(&) = S,(E,)Ss(&4)Sps(E0s). Therefore, the output state can
be written as

[Vout) = Do(0t6)So(80)Ds (0ts) S (§5)S05(505)10) o
= Do(05)S0(50)D;5(0t5) S (65)1E0s) 05 (14)

where |&,) is a two-mode squeezed state, which in the Fock
basis reads as [24]

oo

Y (tanh ryy)'n, n)s, (15)

n=0

|§us) =

cosh 7,

where r,; = |§,] = RT r. The corresponding density matrix
for this pure state reads as pout = |Your) (Yout|- Tracing out
output o, we obtain the density matrix for output s only (our
signal of interest): p; = Tr,{pou}. With the cyclic properties
of the trace, we move operators clockwise to act over the
output subspace o and use D} (a,)D,(ct,) = S} (&,)S,(&,) =
1,, where 1, is the identity. Furthermore, any operator that
only acts on the s subspace can be taken out of the trace. This
brings us to an expression for the quantum state of the signal:

s = Dy(0t)S5 (&) (Trol|€as) (Eas|}) ST (ENDI (). (16)

The partial trace Tr,{|&,s) (§,s|} has the form of a thermal state

1 o0
Pth = Tro{l&0s) (Sosl} = m Xn: (tanh rox)znln)s(n's
(17

with mean population py = (sTs) = sinh?r,;. To sum up,
admixing a coherent and a squeezed state as shown in Fig. 1(c)
produces on one arm of a beam splitter a displaced squeezed
thermal state [29] where the displacement and squeezing are
both in terms of s = a + d:

ps = Dy(a)Ss(€:)pnS! (£,)D] (axy), (18)

with parameters o, = iR|a|e’?, & = re'® = R?*e/®+™) and
pm = sinh[2](RT r). A similar idea, where a displaced
squeezed and a coherent state are brought together through
a BS, was recently formulated [8], although as compared
to Egs. (16) and (18), the two-mode contribution, which
entangles both ports, is missing. As a consequence, the signal
detected on one arm is lacking the thermal contribution.
This oversight has, however, a small effect on the photon
statistics for low squeezing, which is the range of interest for
antibunching. Even though T and R appear as free parameters,
we remind that Eq. (18) is valid for R & T (and is exact for
R =T). We now restrict ourselves to the case of a 50:50
beam splitter (T? = R? = %). The thermal population reads
as, in terms of the squeezed population of the input signal
(ng) = sinh? r,

1
P = 5 (V14 {na) = 1). 19)

3 . - . .
0 e NN (@)
eZed N N

102k State §> N, '\\ 3
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FIG. 2. (a) Admixing a squeezed state with statistics g(;)

(dashed-dotted lines, n = 2, 3) with a coherent state with gﬁf) =1
(dashed) yields a displaced thermal state whose statistics g ranges
between antibunching and superbunching, here shown as a func-
tion of squeezing r. (b) Decomposition of g in terms of the T
coefficients, with Z; = 0 for a squeezed coherent states admixture.
(c) Map of the g® realized for arbitrary admixtures of coherent
la) and r squeezed states. The cases in (a) and (b) correspond to
the purple-dashed cut shown at |¢| = 0.3 and 8 = 2¢. (d) Same as
(c) but for g. In both cases, the black dashed line that optimizes
two-photon antibunching shows the mismatch to different photon
orders.

From p; we can compute the observables for the mixed signal:
al? ng

oy =24 02,

g =14 (n)"?
+2]ae)*[1 — cos(8 — 2¢) coth r]},

¥ =1+ (n,) 73 sinh? r (sinh? 2r + 5 sinh? r cosh 2r
+6la|*{1 — cos(8 — 2¢) coth r] + 3|a|*[3 coth® r — 1
+6[1 — cos(60 — 2¢)cothr]}). (20c)

(7)) = <pm + %) sinh(r),  (20a)

sinh? r{cosh 2r
(20b)

The second- and third-order correlators [Egs. (20b) and
(20c)] are shown in Fig. 2(a) for |o| = 0.3 and as a function
of the squeezing parameter r, with 8 = 2¢> (blue and green
solid lines), along with the corresponding correlators for the
coherent state alone, gfx") =1 for all n (black dashed), and
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for the squeezed state alone, géz) =2 + coth(r)? and g(;) =

6 + 9 coth(r)?, these being particular cases of Egs. (20b)
and (20c) when o = 0 (blue and green dashed-dotted line).
Counterintuitively, g§2’3) « 1 is obtained when the squeezed
light itself is, on the opposite, super-Poissonian, g(;), g(;) > 1.
This is the multiphoton counterpart of Eq. (6), that shows
how adding two maxima can yield a minimum (when the
amplitudes have opposite phases). Here, an interference at
the n > 2 level shows how adding two fields with Poissonian
or super-Poissonian fluctuations can yield a sub-Poissonian
field.

The second-order correlation (20b) is decomposed accord-
ing to Eq. (8) into Z coefficients that read as

sinh*(r) 5
To = 20 4 coth(r)?), (21a)
(ns)?
T =0, (21b)
2 o 2
T, = W[l — cos(@ — 2¢) coth(r)], (21c)

where (n,) = |a|> + sinh?(r). They are shown in Fig. 2(b).
From Egs. (21), g% < 1 only if Z, is negative, so this is
related to squeezing, which can also be small as long as it
is nonzero. Note that while this is a necessary condition, it
is not a sufficient one, i.e., Z, can be negative without g®®
being less than one. The phase between the squeezed and the
coherent sates must satisfy |0 — 2¢| < 7 /2, being optimum
when 6 = 2¢, i.e., when coherent and squeezed states have
the same phase, since the phase of a squeezed state is 6/2.
The optimum sub-Poissonian character is obtained for a small
amount of squeezing r, in which case the coherent state that
minimizes two-photon antibunching has amplitude

|0 |min = €"+/cosh(r) sinh(r), (22)

which yields the optimum two-photon antibunching

@  _ e
N [ — (23)
5 min 1 + sinh(2r)

which is always <1 and goes to zero as both r and « vanish,
in the proportion of Eq. (22). One can find the counterpart
|ot|max Which yields the maximum bunching g{?) .. but the
expressions are too bulky to be given in closed form. The
correlations obtained in this way are strong when the fields
are weak, which will be a recurring theme in the following
sections. We will show how they indeed become exactly zero
and infinite to first order in the driving, regardless of the
other parameters in the system, which has made a lasting
impression for the case of antibunching [30-32]. The possible
photon statistics as a function of the coherent and squeezed
states admixtures, for optimum phase matching, is shown in
Figs. 2(c) and 2(d). There is, therefore, a great tunability
from such a simple admixture since g'? takes all the values
from gfr)nm [Eq. (23)] (which is zero with vanishing signal)
to g%)nax (which is oo with vanishing signal), simply by ad-
justing the magnitudes of the coherent field and the squeezing
parameter. This is shown in Fig. 2(b) for the fixed coherent
amplitude |o| = 0.3 by changing the amount of squeezing,
which alters the Z coefficients with effect of tuning from

antibunching to bunching, with g(z) ~ 0.24 at r ~ 0.07 and

s, min

8% A~ 3.77 at r ~ 0.52. Such a controlled tuning has been
recently experimentally implemented by Foster et al. [17]
with a quantum dot in a waveguide cavity, in which case the
transmittance T and the detuning between the external laser
and the quantum dot served as the control parameters to vary
the Zy and 7, coefficients, which these authors interpreted as a
two-photon bound state and an interference term, respectively.
Similarly, at the three-photon level, and still for the fixed
la| = 0.3 of Fig. 2, one has g, ~0.04 at r ~ 0.03 and
§3) 4 A 23.45 at r ~ 0.44. The curve optimizing two-photon
antibunching, Eq. (22), in these correlation spaces is shown
dashed black in Figs. 2(c) and 2(d). Importantly, and this will
be another recurrent theme in what follows, the admixture that
optimizes g'» antibunching is not the one that optimizes g*’
antibunching, and vice versa, as shown in Fig. 2(d) where
the optimum two-photon antibunching falls in a region of
three-photon bunching. This suggests that such antibunching
is not suitable for single-photon emission. In contrast, su-
perbunching tends to be degenerate at all photon numbers,
which is only approximately realized here due to the broad
maximum.

IV. DYNAMICS

The above considerations are general, and apply equally
well to the case just discussed of interfering two pure states
admixed as an initial condition, or as a result of some self-
consistent dynamics whereby a coherent field (typically, a
laser driving a system) interferes with by-products of its
excitation which, if squeezed, will be decomposed essentially
as described above, thus producing the same type of photon
statistics ranging from sub-Poissonian to superbunched de-
pending on the coherent vs squeezed states relationship.

As the simplest case, consider feeding a beam splitter with
the output of two cavities with Hamiltonians

H, = AaaTa + SZQ(e""’aT + e_i¢a),
Hy = Agd'd +ir/2(d™ — d%),

(24a)
(24b)

driven by a laser of intensity €2, (for the a cavity) and A (for
the d cavity) with respective detunings A, , in their steady
states of a coherent state (for a) and a squeezed thermal state
(for d) through the master equations (¢ = a, d)

dp = ilp, H]+ %EC,O (25)

with L. = 2cpc’ — cfep — pcfe) to include dissipation.
This provides a self-consistent, fully dynamical model which
establishes the correspondence with the displacement «,
squeezing parameters & = re’’, and the thermal population
P, that are given by

o = (a), (26a)
[(d*)| = sinh(r) cosh(r)(1 + 2pu), (26b)
(d'd) = sinh®(r) + pg cosh(2r), (26¢)

6 = arg[(d®) — (d)*]). (26d)
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The two systems can each be solved exactly, yielding the
steady-state solutions for the parameters defined above as
2i Q e
o0 =——""= (27
Vo + 2iA,

for the coherent state and

, 1 r2
P = sinh?(r) = 5( Fj_—dw - 1), (28a)

0 = arg (ya — 2iAq) (28b)

for the squeezed thermal state, where I'? = y? + 4A?. Tun-
ing these easily accessible parameters (laser detunings and
intensities) one can thus produce an output field with the
desired photon statistics, from g? =0 to oo according to
Eqgs. (20). The population for the mixed signal is given by

_ a2 (29)
BT\ Treowz)

while the two-photon statistics is
g ={AT5 (I + 81%) + 8Q2IA(T] — 424%)
x [4T2% — cosQ2) (V2 va — 4va Al + 8vaAaAy)
+2 5in(2¢)(—2vaYaDa + Vi Aa — 407 A4)]
+16Q4(T2 — 422)°} /{4[T20 24202 (T2 — 422)]°).
(30)

The decomposition of g?) in terms of the Z coefficients reads
as

A2 T2 4422
Ty = ;2(1—22’ (31a)
s (T3 —422)
7, =0, (31b)
8 A2
T, = a

n? TH(T3 - 422)
x [2AT2 — cos(2) (V2 va — 4Va A2 + 8VaAuAy)
— sin(20) (4vavada — 2y Ad +8A7A4)],  (Blo)

which landscape of correlations, one can easily check, bears
a close resemblance to the results shown in Fig. 2, with
also identical features such as Z; being identically zero.
This confirms that the results obtained with admixing pure
states transpose directly into a dynamical setting with steady
states of open quantum systems. This particular case could be
further investigated, which will no doubt be the case following
its experimental implementation. For now, we turn in the
remainder of the text to similar dynamical systems which
describe important and a significant fraction of currently
studied quantum optical sources.

V. RESONANCE FLUORESCENCE STATISTICS

The mixing of a coherent and squeezed state occurs at a
fundamental level in the problem of resonance fluorescence.
It is, in fact, in this particular case that we have ourselves
first observed the results which we now generalize [25]. In the

low-driving limit, the so-called Heitler regime, of a two-level
system with annihilation operator o, the output of the system
is, to first order, @ = (o) which, as a complex number (with a
modulus and phase), can be assimilated to a coherent state. In-
deed, this contributes to what is referred to as the “coherent (or
elastic) scattering” fraction of the emission. The incoherent
emission € = o — (o) completes the total emission according
to Eq. (1):

oc=0oa-+e€. (32)

This effectively describes the original emission ¢ as a self-
homodyning whereby a pure quantum signal € is admixed
internally to a coherent fraction «. In the following sections,
we shall remain at this level of the description. In the present
case, however, since this is the simplest configuration, we will
take control of the homodyning by bringing in ourselves an
additional coherent field 8 to tamper with the fraction « nat-
urally present in the original emission. This is easily achieved
in principle with a laser, and since we are considering the
emission from coherently driven systems in the first place, in
line with how homodyning is typically performed for reasons
of practicality and stability, the same laser that drives the
system can have a fraction of its beam diverted upstream of
the emitter to provide a phase- and amplitude-controlled beam
to be admixed with the emitter’s output. We will also use this
self-homodyning picture to characterize in more details the
fluctuations €, that we will show correspond to a squeezed
thermal state, thereby indeed making the analysis of this
section another dynamical version of admixing squeezed and
coherent states as described in Sec. III, although this time not
a contrived dynamics like in Sec. IV, but one at the core of
light-matter interactions, namely, with Hamiltonian (4 = 1)

Hyi = (0, — L)oo +Q, (0" +0), (33)

with o the annihilation operator for a two-level system (2LS)
and €2, the strength of (classical) driving. The formalism
to include dissipation and obtain correlators are as in the
previous Sec. IV, with obvious notations, A, = w, — @ and
¥, the decay rate of the 2LS. By applying Eq. (3) witha =
and d = o, since (a”’aq) = 0for p,q > 1, we find

(s"s™) = (—iRB*)"(IRB)"
— iRT (—iRB*)" '(RB)Y" ' (mB(o) — np*(o)*)
+ nm (—iRB*Y" " (RBY" ' T*(ny). (34)

In this case, the coherent fraction and total population of the
output field are found to be

s) = iRB + T(o),

( (35a)
(s's) = R|B|> + T*(n,) + 2RT Re[iB* ()]

(35b)

Clearly, one can choose the coherent field to compensate
exactly the coherent component of the 2LS « = (o) in a beam
splitter, namely, with 8 =i %(a) so that only the transmitted
fluctuations s = Te are retained. This is a way to extract the
“pure” quantum emission of the two-level system. In such a
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case, the correlators simplify even further, to
(elnemy = (stngmy i
= (=" Dl (ng) = (n +m — Dlaf’].
(36)

With the general result (36), one then easily finds the
general Nth-order correlation function for the fluctuations,
that are now directly available on the output port of the beam
splitter:

o [PV (n,) + (1= 2N)Je)
g =
‘ ((ng) — lee|)N
where (n,) and « = (o) are found from the steady-state
solution for the 2LLS

. 3D

_(1—=(ns) o
10 - ( o <n0'> ’ (38)
as
4Q2 2Q,2As +ivs)
(ng)=—5—"—"-—>——= and o= ———""—"7—"7.
y2 4+ 4A2 4+ 82 y2 + 4A2 + 82
(39)
In terms of the physical parameters, Eq. (37) reads as
w _ NV = 1?(y2 +4A2) +8N>Q2 w0
€ —
8V Q2 (2 +442)" "
Interestingly, suppressing the coherent contribution of

the emission is not the only possibility. One can also tune
the coherent contribution by choosing g’ = ¢'#|8’|, where the
amplitude is parametrized as |B'| = %| B|. The amplitude |8’
can be expressed more suitably in terms of the driving inten-
sity of the laser: |B'| = %}' . Thus, we are broadening the
range of possible output configurations [25], with N-particle
correlators for the resonance fluorescence plus an external
laser having the following form, from which the population
and two-photon statistics follow as special cases (N =1, 2,
respectively):

@) _ T2N ]:'2(N71)Q(27N
)V 2N (y2 +4A2 4+ 892)

x [4N?*y? + F2(y2 +4A% 4 8Q7)

+ ANFys (o cos — 2A, sin )], 41)

where (n,) = (s's), cf. Eq. (35b). These expressions are cor-
rect for any driving strength. However, in the Heitler regime,
the results become ideal in the sense that antibunching be-
comes exactly zero and superbunching becomes infinite. In
this case, Eq. (41) takes the simpler form

W) _ 1BPY DB + N2(n,) + 2N Im{a|Ble¢))
’ (B> + (n) + 2 Im{a| f'le- PN
Both Eqgs. (41) and (42) are shown in Fig. 3, where
one can see how homodyning produces sharp resonances
for various photon numbers in antibunching and a common
superbunching when the population vanishes. The case with
no homodyning (F = 0) produces the best antibunching, both
in magnitude (closest to zero), and in quality, namely, all

(42)

Qy = 0.027,
10‘2 T T
(b) |
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FIG. 3. N-photon statistics of a two-level system driven coher-
ently at rate 2, homodyned (laser corrected) with a field of phase ¢
and amplitude a fraction F of €, in the limit of vanishing driving
[(a), Eq. (41)] and for small but finite driving [(b), Eq. (42)]. (¢),
(d) Maps of two- and three-photon statistics as a function of the
homodyning field. (e) Shows how correlations are weakened with
increasing driving (solid lines) and how antibunching is realized at
a given photon number at a time, as opposed to bunching. Limits
are given in Table I. (f) Shows the dependence on the phase of
the homodyning field, for both vanishing and finite drivings for the
case of bunching (F = 2) and two and three photon antibunching
(F = 4, 6). The only parameter has been taken as y, = 1.

g™ go to zero simultaneously. This is antibuching in the
sense tacitly understood for a single-photon source, separating
photons the ones from the others, so it is apt to call it
“conventional antibunching,” to differentiate it from the other
type of two-photon antibunching, realized with a homodyning
of F # 0 and ¢ = 7. In the latter case, only g is small and
higher-order correlators are typically > 1. One can also, with
different choice of F, realize n-photon antibunching (n = 3
and 4 are shown in Fig. 3 in green and orange, respectively),
but then again for a given photon number only. This follows
from admixing a squeezed and coherent state as discussed in
Sec. III and indeed the phenomenology of the homodyning
of resonance fluorescence as shown in Fig. 3(b) is similar
to that shown in Fig. 2(a) (with the coherent and squeezing
fractions being tuned, respectively). In particular, and for the
same reason, one also finds in resonance fluorescence the
tunability of g between zero to infinity, at small enough
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TABLE 1. N-photon statistics with homodyning for the cases
shown in Fig. 3(e), to leading order in €2, in units of y, = 1.

F=2 4 6 8

g®  1/(64Q%) 1282
¥ 1/(128Q°) 16
P 9/(4096Q%) 256

(729/8)2?
(524288/6561)$2?

driving, simply by changing the coherent fraction. We call
these features “unconventional.” Besides, this terminology fits
(and has been chosen accordingly [18]) with the literature
[32—-46] which calls “unconventional” the supposed “block-
ade” that takes place when interfering fields [29]. They do
not arise from a blockade from states of the system, as in
the conventional scenario [47-59], but from an interference.
Note that unconventional superbunching, unlike unconven-
tional antibunching, is simultaneously bunched at all photon
orders. Actually, this also follows from the cancellation of a
correlator, namely, the first-order one (population) with the
result of having all higher-order correlators diverging. For
nonvanishing driving, the features are qualitatively similar but
strongly damped, as shown on the right column of Fig. 3.
Figure 3(e) gives a quantitative account of how correlations
weaken with driving. The trend of antibunching or super-
bunching with €2 is easily obtained from a series expansion of
Eq. (41) and is given in Table I to leading order in €2 [to next
order, for instance, g?(F = 2) = 1/(64Q*) + 1/(4Q?) and
g(F = 4) = 16 — 768Q?]. This also shows for the case of
two-photon antibunching how only g improves while higher
orders (dashed) saturate. As shown in Figs. 3(c) and 3(d), in
this case, the phase of the homodyning is the same (for the
anharmonic oscillator, for instance, it is N dependent [18]).
The sensitivity of the effect to the phase and driving strength
is shown quantitatively in Fig. 3(f).

One could naturally question why going to the extent
of homodyning since the case / = 0 may appear superior
in several respects, in particular, at nonvanishing pumping.
Beyond the fact that conventional and unconventional statis-
tics stem from two different types of light, which may have
some interest per se, one obvious application is to restore
antibunching which has been lost as a result of filtering. It
is now amply demonstrated that frequency filtering spoils
antibunching of resonance fluorescence [60,61]. The reason
for this in the Heitler regime is shown in Fig. 4, that displays in
Fig. 4(b) the 7 coefficients in the Heitler regime in presence of
filtering I (this can also be obtained from the wave-function
approximation method [62] as detailed in the Supplementary
Material [63] for this and other systems studied in this text):

F2
h=T 3
7, =0, (43b)
7= (43c)
I'+ v

which shows how the filter perturbs the balance of the 7
coefficients, with 7, going to zero faster than 7, resulting in
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FIG. 4. (a) Two-photon statistics of a two-level system in the
Heitler limit with (dashed dark) and without (solid light blue) fil-
tering as a function of the homodyning amplitude F. Conventional
antibunching gets spoiled by filtering but perfect unconventional
antibunching is obtained with homodyning. (b) Evolution of the Z
parameters as a function of the filter’s width I" showing how filtering
disrupts the perfect cancellation of g(szl)_ Homodyning restores the
condition Z, = —27,. (c) Evolution of the Z parameters as a function
of pumping strength 2,. Without filtering, the cancellation is still
perfect at all pumpings but involves Z; and thus cannot be fully
restored with homodyning.

the sum taking off as

2
2 _ Yo 44
8.1 (F T Vg) (44)

While the conventional antibunching is irretrievably lost,
unconventional two-photon antibunching now gets two
conditions to be restored, at F = 2[1 £ /T /(T" + y,)] [25].
The case I' /y, = % is shown in Fig. 4(a). At this subnatural
linewidth filtering, conventional antibunching9 has reduced

from exactly zero in the Heitler limit to =~ 0.56, but
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perfect antibunching can be restored with F =2 &£ 1. Both
resonances are unconventional in the sense that successive
higher-order correlators have nonmatching resonances [64],
but in both cases, perfect antibunching can be restored,
regardless of the filter’s width, by bringing back Z, and Z, to
2 and 1, respectively, with the appropriate correction of the
coherent fraction.

Restoring such a perfect cancellation of the 7 coefficients
works exactly in the Heitler limit and at vanishing driving. At
nonvanishing driving, the Z parameters (11) read as

_ laPP(6{n) —4lal?) _

T - 1, (45a)
nO'
2 2
7, = _gw, (45b)
nU
2 . 2
7, — 2IOtI ({(no) — 2le| )' 450)

In this case, as seen in Fig. 4(c), perfect antibunching does not
follow simply from Z, = —27 but also involves Z; which is
related to anomalous quadrature moments, that a displaced-
thermal squeezed state does not possess, therefore causing a
breakdown of the Gaussian-states approximation. Since it also
depends on «, it becomes impossible to realize another perfect
cancellation, or restore it if spoiled, since the sum depends
in multiple ways on the one free parameter: the homodyning
signal. As a result, the minimum antibunching is now finite,
as shown in Fig. 3(b). At still higher pumping 2, > y,, in
the so-called Mollow regime, antibunching comes exclusively
from Z,, which is the antibunching of an incoherently pumped
two-level system with non-Gaussian fluctuations. In this limit,
(d'd) = (ny), which absorbs the term 1 in Egs. (7). There is no
way to correct for the coherent component in this case since
there is no coherence involved.

We conclude this section by using the self-homodyning
approach to further characterize the nature of the admixing,
which we now show corresponds to lowest order in the driving
to a coherent state for (o), which is a tautology, and to a
squeezed thermal state for the fluctuations €. Two quantities
allow to identify squeezing in a quantum field €, namely, the
mean (X, , ) of the quadratures X, , = 3(e"€" + c.c.) for the
operator € with phase x, as well as the variance (dispersion)
(AXZ ) = (X2, — (Xc.x)?). Note that this could also be done
directly for the full field o since this only adds the compara-
tively trivial contribution of the coherent state (o) = «. The
maximum and minimum of the normal-ordered quadrature
variance for a single mode can be computed independently
of the specific nature of the field:

<:AX€2:)max/min = (AX€2>max/min i

= L) — ()] + (eTe) — ()1, (46)

where the sign corresponds to the maximum and minimum,
respectively. While the variance is positive, its normal-ordered
counterpart does not have to be. The deviation of the variance
from the vacuum value (which is %) to negative values reveals
some degree of quadrature squeezing. Likewise, the angle of

squeezing is generically given by 6 = arg[(e?) — (€)?]. One
gets, by substituting the correlators (36) in (46),

_2Q%(y7 +4A) —892)

AXZ) = , (47a)
FAX (y2 +4A2 +802)°

2
(axx) = 2% (47b)

Y2+ 4A2 +8Q2°

with the angle of squeezing 6 = arg[(y, — 2iA,)?]. Analyz-
ing the sign of these quantities would therefore allow us to
infer squeezing. This is made particularly clear in the low-
driving regime (2, — 0), where the previous expressions at
the lowest order in €2, simplify to

202

AX2: e
< Yo 447

€ ')max/min ~ (48)
In this limit, the two extrema of the normal-ordered variance
are simply symmetrical around zero, so (:AXEZ:) is always
negative and fluctuations thus always bear some indication of
squeezing. We can furthermore recognize these expressions
as a limit of low squeezing from a displaced squeezed thermal
state. When r — 0, such states have the variance

(:AX?:)PST

DT ~ (4200 420~ 1~ £ 2. (49)
where the superscript DST means that the observable corre-
sponds to an exact displaced squeezed thermal state. We have
approximated 1+ 2(ny,) to 1 since the thermal population
grows like ¢ (which comes from the first-order of the inco-
herent population). Comparing Eq. (48) with (49) shows that
the incoherent population in the Heitler regime behaves like a
squeezed thermal state with effective squeezing parameter 7.
and effective thermal population pg,:

492 . 1652 50
Foff = ———  an ~ —.
Ty +anl o (v2 +4A2)

From these two parameters, an effective g(z), namely g(ezﬂ)
can be obtained for the fluctuations. Supposing that, in the
low-excitation regime, the state of fluctuations is that of a
squeezed thermal state, then g(éz) should have the same form.
Fixing |a| = 0 in Eq. (20b) and taking the limit 7> — 0 and
pm — 0 (both go to 0 with the same power dependence), we
get

2) rgff
N 51)
(reff + Pth)

which, after substituting Eq. (50), reads as

@) ~ (7/02 +4A(27)2

geff 6494 (52)

This simple expression is a good approximation to the exact
result (40) that gives the statistics of the fluctuations. As was
the case when admixing a pure coherent-state to a coherent
state in Sec. III, antibunching of the total signal g» < 1 is
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FIG. 5. Landscape of two-photon correlations in the Jaynes-
Cummings system, for cavity driving only (left, with ¥ = 0) and
mixed driving (right, with ¥ = 0.5 and ¢ = 7 /2), as a function of
where the system is driven (w.) and where it is emitting (w,). The
top row shows the exact results, Eq. (55) left and Eq. (56) right,
and the bottom row its classification in terms of conventional (C)
and unconventional (U) features of antibunching (A) and bunching
(B), namely, Eq. (57) with N = 1 for CA (solid blue) and N = 2 for
CB (solid red), and Eq. (60) for UA (dashed blue). For the left case
with cavity pumping only, the UA simplifes to Eq. (62). Parameters:
g=1,9,=0.1,and y, = 0.01.

J

obtained from a coherent state and a superbunched g > 1
(even diverging gfffz — 00) squeezed state.

VI. JAYNES-CUMMINGS STATISTICS

The same analysis as above can be transported to a wealth
of other systems. For instance, in the case of an anharmonic
oscillator, new resonances appear and with richer phase con-
ditions than those of a two-level system [18]. We go directly to
a fundamental and natural system where to apply the concepts
above, namely, the Jaynes-Cummings model [65,66], since
this adds to the two-level system a quantized optical mode
(a cavity) with a total emission that, therefore, consists intrin-
sically of the mixing of a quantum (two-level system) and a
coherent (cavity) signal. The photon statistics of this system
has been for decades observed in one way or another to exhibit
resonances which are a simple and direct manifestation of
self-homodyning in the wake of the previous sections, but
which have often been merely taken as the brute result of
numerical simulations. We now provide what we believe is the
appropriate physical picture to unify, classify, and understand
such results. Given the role of the amplitude and phase of
the fields in phenomena that are ultimately interferences, we
include in the Hamiltonian two driving terms, one for the
emitter 2, the other for the cavity €2,. Their relative phase
¢ and the ratio of their amplitude x = Q, /2, will play a role
in tuning the statistics. The Hamiltonian therefore reads as

He = Ay,0'0 +Aja'a+ ga’o +o'a)
+ Qe%d +ea)+ Q0T +0).  (53)

Solving for the steady state in the low-driving regime, i.e.,
when @, , < Va4, Y, yields for the populations

487 + T2Q2 — 46Q,Q, (124, cos ¢ + , sin p)

o a o

o a

(n,) =4

o

16g* + 882 (YuVs — 40,Ay) + 2172

; (54)

with matching upper and lower indices (including +) and with F? = yiz + 4Ai2 (fori =a, o).
Similarly, the two-photon coherence function from the cavity can be found as

O ={[168" + 8¢ (Ya¥e —4AaAs) + T2 ][168* (1 4+ x*) +88°(2x°TT, + 4A: A1y — Yoyi1) + ToTh
—16gx (AoTT + 487 Anll + x71) cos ¢ + 8¢ x*(4g” — Yo yi1 + 405 A1y) coOs 26
—8gx (e T +48%ynlx* — 1) sing + 168 x> (vaAo + o A12)sin2¢]} /
[[168" + 88 (yarii — 4A,A1) + T2TH |[482 %% + T2 — 4gx (2, cos  + v, sind)]’}, (55)

where Ajj = iA,+ jAg, Vij = iYa+ Yo, and T}, = v + 4A7;. The range of x extends from 0 to 0o so that it is convenient

to use the derived quantity ¥ = %atan( x) which varies between 0 and 1. The expressions above are cumbersome but they are
covering a considerable amount of phenomenology, each variation of which could give rise to an independent numerical study
of its own. Let us start with the much simpler looking particular case of one pumping only, namely, with cavity pumping only,
which is the case most discussed in the literature. Then, Eq. (55) reduces to

82 = [16g" + 88 (Vo vu — 40,A,) + T2T2][ 168" — 88*(Yoy11 — 4A; A1) + T2TT]/
T3 [168" + 8¢ (vayn — 4A,A1) + ToTT . (56)

A density plot of Eq. (56) is shown in Fig. 5(a) where one sees that the formula produces simple features in the form
of well-defined lines of antibunching (blue in our color code) and bunching (red), as a function of the relevant parameters
(pumping, lifetimes, etc.). The general expression (55) is shown in the facing Fig. 5(b) for the case of a balanced driving
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Q, = Q, (¥ = 0.5) with also a relative phase of 77 /2 between the two drivings. Other cases can be visualized interactively with
an applet [67]. Depending on the configuration, one sees that some features appear while others disappear, e.g., the horizontal
superbunched line disappears and a diagonal antibunched line appears, with also two antibunched hyperbolas now absent. We
remind that the change from one case to the other comes merely from switching on a second and out-of-phase driving term from
Q, = 0 (left) to 2, = R, (right). One can see how, as a result, in the configuration of driving the system and detecting the
photons both at resonance (wp. = wy = 0), there is a drastic change from giant superbunching (g* = 1.6x10?) when driving
the cavity to strong antibunching (g* = 0.01) when also driving the emitter. This is an illustration of how greatly tunable is the
photon statistics, this time through the balance of the coherent fields involved.

We now address the qualitative meaning of each line. Some of the features, shown in Fig. 5, are easily recognized, namely, the
lower and upper polaritons, with their characteristic anticrossing, and even more simply, the bare states of the cavity (horizontal
line) and two-level system (diagonal). Their expressions are consequently easily found as w,, w, for the bare states and [68,69]

2
E:(‘:N) ZNwa-i-%iRe\/(«/ﬁg)?-k <wa za)a _l.)/a - Va> ’ (57)

with N = 1 for the single polaritons and N = 2 for the two-excitation polaritons. Equation (57) with N = 1 yields the blue solid
lines labeled CA, for “conventional antibunching,” and with N = 2, the red solid lines labelled CB for “conventional bunching,”
in Figs. 5(c) and 5(d). At the g level, only features up to N = 2 show up, but if one considers higher-order photon correlations,
then higher rungs of the Jaynes-Cummings ladder are probed and the traces formed by Eq. (57) for N < k are seen in g, as is
shown in Fig. 6 for N up to 4. Although these features can appear only at a given photon number N, their position is otherwise
fixed. We note also that although we consider throughout strong-coupling configurations, and its underlying dressed-states
structure, there is not such a clear-cut distinction between strong and weak coupling, as discussed in more details in Ref. [18],
where a critical coupling strength gp between the cavity and the 2LS that results in Poissonian statistics (g% = 1), is compared
to bunching and antibunching in the system. We do not discuss this further but give its closed-form expression

gp = ${[16A% +32A,A7 — 8(y2 + 3vavo + v —4A2)AZ
— 875 (47 + 37)Aulg + V2202 + 2vas + v2 = 882)]" 4 2 - 4a2}'. (58)
A smaller coupling g < gp produces antibunched light while a larger coupling g > gp produces bunched light.

Less immediate to identify are the other features, not accounted for by Eq. (57), but that can be extracted from Eq. (55). This
can be conveniently done since the features already identified do not provide the best antibunching, which is produced by the
unconventional mechanism instead and we have seen that this reaches exactly zero in the vanishing driving limit. One can thus
hope to find the condition for the other lines simply by solving g(az) = 0 with Q,, — 0, which yields the following condition
(see also the Supplemental Material [63]):

A = [i(Vs + 2iA)(y11 +2iA) + 4e Pg x(y11 + 2iAs) — 4ig (1 + e x )] /Qyy + 4iA, — 8ie g x).  (59)

The expression is, in general, complex, which means that one fails to get exactly g») = 0. Given that we are now dealing
with self-homodyning, there is no guarantee indeed that the system would interfere its coherent and quantum component so as
to cancel exactly a given photon-number statistics. Instead, there is the need for a fine tuning, which, if not enforced externally
as was the case in the previous sections, can only be realized fortuitously. This account for the sharpness of the resonances as
the exact conditions to produce a perfect cancellation requires a careful balancing which is realized at an isolated point of the
configuration space. Taking the real part, however, happens to provide the condition for unconventional antibunching (UA) that
accounts for the features not produced by Eq. (57). The expression then reads as

B 4gx{2 cos p[2A% + g4 (1 + xB)] — gx Ao €08 2¢ — ¥y sin(gx cosd — 2A4)} — Ag[I'2 + 487 (1 + 4x?)]
- Y2+ 4(A2 +482x2%) — 88X (2A, cOS ¢ + ¥, SN P) ‘
Equation (60) yields the blue dashed lines labeled UA in Figs. 5(c) and 5(d). All CA, UA, CB, and UB lines are easily
recognized in the numerically exact plots in Figs. 5(a) and 5(b), which fit perfectly with the theoretical lines for small enough
Q. Further imposing the imaginary part to be also zero finds the isolated points where g = 0 exactly, which provides a
second expression:
_ 4gx cos (yi1 — gx sing) £ v/ —yi1(vo — 4gx sind)[—4g2 + voyi1 — 4gx (gx c0s2¢ + i1 sin )] + 4g7 x2 sin” 2¢
- 2yn )

Aq

(60)

Ag

(61)
Since Eq. (61) has to be real, the radicand has to be positive. For the particular case x = 0, which is that of main interest, these
expressions simplify considerably, namely, Eq. (60) becomes

D= -, (14— (62)
a — o )/(3+4Ag ’
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FIG. 6. Conventional and unconventional features at the N = 1, 2, 3, and 4-photon level. Upper row shows the numerically exact
landscapes of N-photon observables, from the population normalized to the relative laser intensity 22 = ©2/y2 (N = 1, left) until four-photon
correlations (N = 4 right). Middle row shows the theoretical lines that reproduce these structures and their classifications as conventional (C,
solid) and unconventional (U, dashed) bunching (red) and antibunching (blue), respectively. Bottom row shows the cuts along the horizontal
dashed line in the top row. The inset in g¥ magnifies a forking of antibunching. Parameters are the same as in Fig. 5(a).

and Eq. (61) becomes

2 2
A, ==+ Y& _ Yo (63)
Vil 4

These conditions give, first, the UA dashed lines shown, in
Fig. 5(c) and, second, the optimum points along these curves.
Thus, with mixed driving [Egs. (60) and (61)] or cavity-only
driving [Egs. (62) and (63)], both conditions taken together
provide where to drive and detect the Jaynes-Cummings sys-
tem to reach perfect g'» cancellation.

The complexity of photon correlations when including all
orders can hardly be exaggerated. Figure 6 shows how the
configuration of Fig. 5(a) appears when resolved to different
photon numbers (1 < N < 4). At the single-photon level, left
column, which is simply luminescence, or any measurement
of the population n, of the system, one only resolves the
familiar anticrossing of the two dressed states, or polaritons.
A cut as shown in the bottom-left panel is simply a Lorentzian

function whose width is given by the effective lifetime of

the system yy = (¥, + 43;2}’ <)/2. There is actually one fea-

ture which is not typicallya considered given its intrinsically
impractical measurement, namely, the horizontal black line
at wp = 0 which exhibits a suppression of the population.

There is much less light emitted there than at any random
point. This anomalously faint light, however, comes with
very strong correlations, to all orders, as is revealed in the
other panels where this line shows up as unconventional
bunching. This results precisely from the self-homodyning
of the system canceling largely the coherent contribution
of the emission, leaving mainly quantum fluctutations or,
here one could say, quantum noise, that has superbunched
statistics.

At the two-photon level, on the second column of Fig. 6,
one finds again the polariton lines, which are antibunched,
according to the conventional blockade scenario, hence the
label CA. They are supplemented by two unconventional,
self-homodyning antibunching lines UA, in dashes, as well
as the N = 2 polariton dressed states of Eq. (57) which, by
two-photon absorption, now exhibit conventional bunching
CB. There is a beautiful symmetry and even proximity of
these resonances, although they can be of a different character
(antibunching and bunching) and origin (conventional and
unconventional). Note, in particular, in the bottom panel how
the CA and UA exhibit an essentially identical value. At
the three-photon level, on the third column, and even more
so at the four-photon level, fourth column, one now finds a
proliferation of CB features, due to involving the higher rungs

063824-12



TUNING PHOTON STATISTICS WITH COHERENT FIELDS

PHYSICAL REVIEW A 101, 063824 (2020)

of the Jaynes-Cummings ladder, although these simply add to
the lines already existing. In contrast, as already commented,
the UA lines shift positions. There also appears more UA
lines, as can be seen in g with the appearance of a diagonal
UA line, that further exhibits a fork at the four-photon level.
One can check that this complicated structure, predicted by
the theory, is reproduced and easily identified in the nu-
merically exact landscape of correlation, as shown in the
inset of g where the branch crossing of antibunching is
clearly resolvable, despite being surrounded by conventional
bunching lines. The cuts in the bottom row consequently
exhibit extremely complex resonances alternating between
giant bunching and antibunching, whose relative interplay
account for the relative values found in each case.

This complex phenomenology fits with the simple classifi-
cation above and can also be simply understood as multipho-
ton interferences, as can be illustrated by their decomposition
in terms of the Z parameters of Eq. (7) (the same could
be done for the 7, K parameters, etc.) In this dynamical
case, the decomposition (11) yields the following expressions,
when the cavity alone is driven (x = 0) at vanishing pumping
(although the general case could also be provided, there is no
need to for the present discussion):

Ty = 2568°/£1(8. Duor Varo),

7, =0,

T = 28" [~12(48 + va(ya + 1) — 442)
+ 45 (4%a + 3V0)AaDg — 16A,A]
+4AL (48 + Vaa + ¥5)—4A2) ]/ £1(8. Ao+ Varo)s

(64¢)

(64a)
(64b)

where the function fi(g, Ass, Va.o) is defined as
fl (g’ Au,a ) ya,a)

= (2 4+402)’ (168" +88[ya(Vat Vo) —4Du(Ay + A,)]
+ (12 + 40 [(a + Vo P + 4D+ A, (65)

As previously, at vanishing driving, Z; = 0 and we are
therefore back to the paradigm of the above sections of admix-
ing a squeezed and coherent state. Simply, the admixing varies
self-consistently with detunings depending on the system pa-
rameters. Figure 7 shows how the Z parameters balance each
other to produce the various features. As is also the case from
a squeezing-coherent state admixture, the sub-Poissonian Z
parameter is always positive, even for CA lines, and it is
for self-homodyning to bring an overall negative g!». This
decomposition makes particularly obvious something which
will be confirmed even more in the next section with the
more complex case of polaritons, and that one can check
was the case in the simpler previous cases, namely, once
one recognizes the common denominator, Z, encodes most
of the complexity of the problem. The similarities in how
various features get decomposed can be deceptive. Note how
the UA resonance in the top panel of Fig. 7 is much sharper
than the CA one, namely, g»)(CA) = 0.0045 as compared to
gP(UA) = 0 exactly, to leading order (the cut at wp, ~ 3.92g
has been chosen to intercept this global minimum). Although
the Z lines seem symmetric around 0, Z, is steeper for the
UA line than for the CA line and conversely Z is steeper
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FIG. 7. Decomposition of the Jaynes-Cummings statistics into
its Z coefficients (in log scales, separating the positive and negative
components) for the two cuts shown in the middle panel. The upper
case captures one of the exactly-zero antibunching, on the UA line.
Parameters are the same as in Fig. 5(a).

for the CA line than for the UA line, causing the sharper
resonance for the unconventional line. Adding the higher-
order correlations, one would also see how the antibunching is
pinned at the same position for CA and takes place in different
places depending on the photon order for UA. Note also how
the characteristic dispersivelike shape of antibunching and
bunching as seen on the right of the upper panel, that one can
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FIG. 8. Intersection of the UA and CA lines in the Jaynes-
Cummings model. (a) Representation to show simultaneously the
lines’ shape in the correlation landscape and their magnitude, with
two of them intersecting with the effect of the UA line dragging down
the CA line. (b), (c) Correlation landscapes with (b) no intersection,
when y = 0.87 and ¢ = 7w and (c) [case also shown in (a)] with
intersection, when y = 0.5 and ¢ = 7 /2. (d), (e) Magnitude of the
UA and CA along their respective lines, as a function of w; as the
scanning parameter. Note that, as a consequence, the case wp =0
corresponds to infinite cavity detuning, indicated by a gap opening
which is otherwise continuous. In the intersecting case, note the
highly populated, strong, and all-order antibunching. Parameters are
the same as in Fig. 5(a).

understand as the meeting of two lines (here UA and CB),
arises due to a change of sign of Z,. Likewise, these changes
of sign are notable when bunching is produced, but instead of
discussing them further, we turn to what is possibly the most
interesting consequence of all these considerations, which, in
the Jaynes-Cummings system, occurs in the case of mixed
driving [70]. In this case, one can find the peculiar situation
where conventional and unconventional features intersect.
This can happen for the superbunching as seen in Fig. 5(a),
with the effect of maximizing it drastically when UB and
CB meet, but more notably, it can also happen involving a
polariton line, meaning, with a lot of signal. Namely, the CA
from the upper polariton branch can meet the UA line, as
shown in Fig. 8 that compares the case of balanced driving,
namely, Q, = Q, (x = 1) with both — 0 (left column), with

unbalanced driving, 2, = Q,/5 (x & 5), and going to zero in
this ratio. In the correlation landscapes, one can recognize the
CA polariton lines, displaying the characteristic anticrossing
shapes, and the straight line of UA (all in blue, being anti-
bunched). In the x = 0 case, the UA line fits between the
two CA lines and all remain distinct. In the x = 0.87 case,
the UA line is shifted to negative w, and intersects the CA
line (at w, &~ —1.73g and wp ~ 0.46g). At this intersection,
one finds the advantageous configuration combining the best
of two worlds, namely, a large population since the emission
comes from a real state of the system (CA), the antibunching
is very strong (UA) and occurs to all orders (CA). This is
shown in Figs. 8(d) and 8(e). In the nonintersecting case (left
column), antibunching is better (smaller) in the CA case when
|wr| < g because self-homodyning, with g&z)(UA) ~ 0.012,
happens in this case to be far from its optimum cancel-
lation and, by symmetry, also have its minima degenerate,
thus bearing resemblances, although superficially only, with
conventional antibunching. One feature that remains is the
small population, namely, n,/Q? ~ 0.99. Although CA is
better in this case, it reaches its minimum of g(az)(CA) ~ 10~
when w, — %00, so this is an asymptotic optimum (which
we indicate on the figure by opening a gap in the curve

oA
pointed out by —). Now, comparing with the intersecting
Fo0

case (right column), the UA exhibits one of its typical sharp
and strong resonances, here with g» &~ 3.3x107%, and this
drags the CA line in its wake, as seen in Fig. 8(a) in the
full-space of correlation and more quantitatively in Fig. 8(e)
that follows g!?) on the respective UA and CA resonances,
which meet at the vertical dotted line. Also, all the n-photon
antibunchings are now degenerate, as is typical of a CA
resonance. And as the final asset, the population is, this time,
n,/$2 ~ 1.67x10%, that is, almost 20000 times higher than
in the nonintersecting case. We have, therefore, a considerably
enhanced situation due to the intersection of UA and CA
lines: a much stronger antibunching as compared to CA alone,
with a much stronger signal as compared to UA alone. We
further discuss this peculiarity in the next section, where it
becomes even more attractive. We conclude this section by

noting that the : gap opened in the CA line does not produce
{o¢]

a discontinuity, suggesting underlying symmetries and a pe-
culiar parameter-space topology supporting the landscape of
correlations, which we are simply laying down on a plane for
simplicity and by force of habit, but such a continuity, which
becomes compelling in absence of a symmetry as in Fig. 8(e),
points at a better parametrization.

VII. MICROCAVITY POLARITON STATISTICS

We now contrast the previous results with a platform,
namely, microcavity polaritons, where the effects just dis-
cussed become even more relevant given the intense activity
in realizing the two types of antibunching: conventional and
unconventional. We will show in particular how the rich
interplay of self-homodyning of the anharmonic oscillator
[18] with a cavity leads to surprising results going against
the community’s expectations regarding the role of interac-
tions and the experimental configurations to consider. The
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Hamiltonian is similar to the Jaynes-Cumming’s equation
(53), except that the emitter (excitons) has annihilation opera-
tor b also following Bose algebra (like a) but with a nonlinear
quartic nonlinearity of strength U (describing exciton-exciton
self-interactions):

. U . . .
H = hwa'a + hopb'b + EbTb'bb + ig(a™h + ab")

+ Qe a + Qe b+ H.c. (66)
|

In the limit U — oo, the results recover those of the Jayne-
Cummings model. Polariton systems have weak nonlinearities
U < y, and we will consider both limits. The antibunching
for both the cavity and exciton emission (since this is one is
not trivially zero anymore) can be obtained in closed form.
Again, despite the result not being of immediate interest in
such a bulky form, given that it covers in a unified single for-
mula a plethora of results that one otherwise finds scattered in
the literature, we nevertheless give it in its entirety as follows:

g2 = {[16g" + 8¢ (vavs — 48a2Ap) + TIT|[TETE (v + U) + 822 (U [48p A1 — vioyin] + 205 [ + OB ]
+8UA A — 22Uy, Az — AU vaypp) + 168" (U + [y + (U +2A11)° ] x*) — 16gx cos ¢ (AT [y + U]
+28[UQANT L — yoyin) + QU AN + 28T + Ufyayn + 4811 A0 x%1) + 8¢ X7 cos 2¢ (48°ULU + 2A44]
—Ulyoyin — 40pA101 — [ — AALITS, + 20 [y Ay + A (48,A1 — ¥)]) — 88x sing (I, [v2 + O3]
+4L[THCHU G — DWUyn+2v500 + 2y1285)]) +8¢° X7 sin 26 (—48° Uy +4v, AT T +2U [ya A + vpA 2]
+U[vevs +4mAh + vl ) /(TITH [y + O] + 168 [y + U + 28107 ] + 8¢ [U (vayn — 48aA11)
T3 (Va¥s — 40a0p) — 2U (V2 Ayi = 2vavpBp + 404 A1 Ap)]) (482 X% + T7 — 4gx[2A5 cos ¢ + yp sin¢])’}. (67a)

g = {T[16g" + 8¢ (vays — 484 2p) + T 1} /{TTT [y + UR] + 168 [y + (U +2411)°]

+ 88 [UP(Yayin — 48D 11) + T3 (Ya¥ — 480 8p) = 2U (vy Ayt — 2vavpp + 480011 A1) ]},

(67b)

where we have used the shorthand notation I'7 = y? +4A7 for ¢ =a,b as well as Aj; =iA,+ jAp, Vij = iVa+ Yo,
I‘izj = yi% +4A2, U, ;= iU + jA, and j denotes negative integer values (j = —j). As before, considerable simplifications are

ij’

obtained when focusing on particular cases, e.g., by considering cavity pumping only, i.e., x = 0 (the case usually assumed in

the literature), in which case Eq. (67a) reduces to

87 = [16g* + 88> (vays — 48, Ap) + TLTE|{168°U% + TTT [y + (U +244)°]
— 88U [4vavshp — 8BAL AL + 2V Az + Uy — 40,011}/
[8°TH{U>(Yayin — 48a A1) + T (Va¥s — 4840p) — 2U ¥ Ati — 2va¥p A + 40, A A ]}
+ DT [y + (U +280)°] + 168 [y} + (U +241)°]}]- (68)

The same decomposition of this two-photon correlation
function can be made in terms of the Z parameters (11). These
results are also exact but become extremely heavy even for the
particular case x = 0, so we give them in the Supplemental
Material [63]. They are plotted for two cuts of interest in the
landscape of correlations of polaritons in Fig. 9. We need
not describe in much details the structure of this landscape
for polaritons since it is so closely related to the Jaynes-
Cummings case, with conventional C and unconventional
U, bunching B and antibunching A combinations giving
rise to CB, CA, UB, and UA lines, with the same origins
and consequently identical properties, such as C lines being
attributable to dressed states of the systems and U lines to
interferences at a given photon number. These are labeled
directly on the figure and one can compare with Figs. 5-7
from the Jaynes-Cummings limit to see both similarities and
departures. Some are quantitative only, such as the two CB
lines that were two parallel lines in the Jaynes-Cummings case
now become curved and drifting away in the UP region, where
the UA line also gets squeezed and sent away to large cavity
detunings. Others are qualitative, like the apparition of a new

(

CB line, due to a dressed state from the second manifold
(purely upper polaritonic) whose energy grows like the
interaction strength, being sent away to infinity in the Jaynes-
Cummings limit U — oo where the line has thus completely
disappeared. The decomposition in terms of the 7 parameters
also presents mainly quantitative departures from its Jaynes-
Cummings counterpart. The strong oscillations of Z, are
concomitant with the intersection of the CB and UB lines here,
which produces, like in the Jaynes-Cummings case, a boost
of superbunching by several orders of magnitude, peaking at
g2 ~ 6.9x10!° for the lower intersection. More importantly,
we find again the intersection between the UA and CA lines,
already discussed in the previous section. Here, an important
deviation is that this can happen without the need of mixed
driving, which is understandably a complication to implement
experimentally. In the polariton platform even more so than
in the Jaynes-Cummings system, one is interested in finding
the optimum antibunching (i.e., smallest g2) [71]. The value
of this intersection point in this regard will be stressed in the
following. As previously, the perfect-antibunching conditions
can be derived from the equation g = 0, which we will do
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FIG. 9. Decomposition of g2 in terms of the Z coefficients
(Supplemental Material [63]) for microcavity polaritons, along the
two cuts shown in the central panel, which intersect the points
where g becomes exactly zero to leading order for the upper cut
and corresponds to the CA-UA intersection point for the lower cut.
Parameters: g=1,y, =0.1, 9, =0.01,U =1, x =0 (¢ = 0). The
cuts are at w,/g ~ 8.63 where UA is exactly zero and w,/g =~ —0.44
where UA and CA intersect.

here for the x = 0 case given by the expression (68). Then,
clearing A, from the previous equation, leads to

Ay = {€P[48°U — (yp+2i Ap)(y11 +2iAp)(U + 24, — iyp)]
+ 4igx (U + 24, — iyp)(yi1 + 2iA)
+ 4e7 @ x2U + 204 — ivi)}/N, (69)

where N is defined as
N =2[e® (v 4+ 2iAp) (v + iU + 2iA,)
+ dgx (U + 20, — iyy) —4¢7x%e 1. (70)

Again, although by definition A, must be real, we arrive to
a complex-valued condition, but the real part of Eq. (69) gives
the equation for the UA lines. Moreover, the cancellation of its
imaginary part also provides a second condition that allows to
identify g») = 0 exactly, to lowest order in the driving. Like in
the Jaynes-Cummings case, since there are two conditions, it
is not possible to fulfill both simultaneously except at isolated
points in the parameter space. As an illustration, we present
here the case of cavity excitation (x = 0). Splitting both real
and imaginary parts from Eq. (69), we find

4% Ay 282 (U +2A)

Aa:—A— ’
P24 AAL T I 1 (U 20,2

(71a)

1
0=y.+y+4¢ (— + )
Va T Vb 8Vb y,,2+(U+2Ab)2

(71b)

vE +4A2

The first expression, Eq. (71a), provides an implicit equa-
tion for the three distinct curves of UA shown in Figs. 9
and 10, whereas the latter gives the exact location where g§}>
becomes exactly zero, to lowest order in the driving.

To appreciate how these several aspects compete with each
other, we show in Figs. 10(a) and 10(d) a three-dimensional
(3D) representation of the joint magnitude and shapes of the
antibunching lines in the polaritonic landscapes of correla-
tions, for strong (upper row) and weak (lower row) polariton
interactions. The correlation landscapes are also shown in
Figs. 10(b) and 10(e) with the two polariton branches iden-
tified, and the magnitudes of antibunching on the polariton
branches are given up to the fourth order in Figs. 10(c) and
10(f). There is a crossing of the CA and UA lines in the upper
case, as indeed the conditions for the intersection to take place
require that the interactions U are neither too large nor too
weak but be in the range

2.57y, +9.30y, /8" SU S 28 /v) —Sv (72)

which is obtained by studying the solutions of UA = CA in
the limit of small y;, yielding exact but surprisingly awkward
solutions for the lower bound: for instance, 2.57 is really
1+ 6 cos(ir/9). The exact solution for 9.30 is a similar but
more complex expression in terms of trigonometric functions
of multiples of 7 /9. When the intersection exists, as is clear
in Fig. 10(b), one sees [Figs. 10(a) and 10(c)] how the CA
line, typically of fairly modest antibunching, gets sucked in
by the UA line and exhibits, as a result, record value of
antibunching as compared to typical CA values, here with
g ~ 9.2x 1076, as compared to g'» ~ 0.02 only on the other
(LP) polariton branch. Note, interestingly, that this effect takes
place on the UP polariton branch, which is typically discarded
by experimentalists for practical reasons (it is typically less
bright and not as defined as its lower sister). In both cases,
being on the branches, the population is very large, namely,
n,/$22 2 31.05 on the UP as compared to n,/$2 = 0.02 for
the optimum UA off branch, even though in this case the

063824-16



TUNING PHOTON STATISTICS WITH COHERENT FIELDS

PHYSICAL REVIEW A 101, 063824 (2020)

(@) (b)

(c)

up

L/n

\"

_ D

LP

14

2
¢
mo

[m]
m10°

-15

-10

50 5 10

(d) (©

up

1.002
1,000
0.998)
0.996
5 0.994]
T 0992

€00 = "+/n

Lp .
g
mo.l

ol
m10*

Q.
L/g

-15-10 -5 0

o)
wa/g

5 10 15

Wa/g

FIG. 10. Conventional and unconventional statistics in a microcavity polariton system, with strong (top row, U/y, = 0.2) and weak (bottom
row, U/y, = 0.03) interactions. (a), (d) Conventional (solid) and unconventional (dashed) antibunching as a 3D representation of the landscapes
of correlations shown in (b)—(e). Note how the CA line gets pulled down by the UA one if they intersect. (c)—(f) g% for n = 2, 3, 4 along the
upper (UP) and lower (LP) polariton lines (i.e., CA). The upper polariton line gets a much better antibunching thanks to its proximity, or even
intersection, with the unconventional antibunching. The inset in (f) shows for comparison the much smaller antibunching of the upper line

(the one so far reported experimentally).

antibunching is perfect, being exactly zero. Also, although the
minima for higher-order correlators are not degenerate with
this crossing point, they are at least also very small, unlike UA
features alone where two-photon antibunching comes with
higher-order photon bunching (cf. Fig. 4).

Although the intersection is not always guaranteed, it is
interesting that the proximity alone of the UA and CA lines
tends to produce a similar result of a considerable improve-
ment of the CA. This is shown in the bottom row of Fig. 10,
where there is no intersection, but as the two lines con-
verge asymptotically toward each other with increasing cavity
(negative) detuning, the CA on the UP line becomes much
smaller than would be expected from conventional polariton
blockade. With U /y,, = 0.03, which is about the experimental
value assumed in several systems, this proximity leads to
a value of gﬁlz) ~ 0.499 which, to be appreciated, has to be
compared with its pure CA counterpart (on the LP branch),
which is g2 ~ 0.993 only, that corresponds to the results re-
cently experimentally reported [59,72]. Our picture shows the
considerable antibunching improvement that is in principle
within reach merely by changing branches. The large detuning
required to reach the minimum, namely, for our parameters
w, ~ —83.4g, means a smaller population, which can become
as detrimental to the signal as being off branch, and indeed,
n,/$2 A~ 5x10~* on the highly detuned UP branch is much
less than n,/ Qi ~ 0.02 for the optimum UA of ggz) =0, off
branch at w, ~ —0.48g. But since the resonance is very broad,
one can still obtain sizable all-order antibunching on the UP
branch at smaller detunings, as seen in Fig. 10(f). For instance,
at w, = —10g, a routine detuning, g? ~ 0.86, which would
be a clear-cut, compelling measurement still over 20 times
larger than the CA on the LP branch and with, this time,
the considerable population n,/Q2 A 3.2, that is about 160

higher than the off-branch UA. At w, = —5g, with a still
neatly resolvable g% ~ 0.92 (similar to the values actually
reported in the literature on the lower branch [59,72]), one
gains another order of magnitude in signal.

We leave these interesting prospects of this intersection
for an even more surprising result, that concerns the strength
of the interactions required to optimize antibunching. It is
widely assumed that as strong as possible interactions are
required to maximize antibunching (i.e., to minimize the value
of g2). This is true for CA, but not for UA. Consequently, this
limitation also gets lifted at the UA-CA intersection, with an
antibunching on the polariton branch, with a large population
that is maximum for a finite interaction strength, close to
U =~ g. This coincidental value appears to be favoring the
level degeneracy and thus to optimize the unconventional type
of the joint antibunching. This is shown in Fig. 11(a), that
provides the optimum two-photon antibunching g%’ along the
LP line (black), where it is purely CA, and along the UP line
(red), where it intersects with the UA line. The LP antibunch-
ing behaves as expected, steadily decreasing until it reaches
its optimum value which is that of the Jaynes-Cummings
system when U — oo, with ¢? ~ 4.4x1073. In contrast,
the UP antibunching achieves several orders of magnitude
smaller values for finite interactions, namely, g» ~ 3.5x107°
at U/y, =~ 4.8. While this optimum antibunching is obtained
for a very strong interaction strength by today’s polaritonic
standards, one still gets a considerable improvement for the
typical values of current experiments, as shown in Fig. 11(b).
We already discussed the case U/y, = 0.03, that is shown
again with the strong-interaction case U/y, = 2 in Fig. 11(c),
where one sees how the LP optimum antibunching (shown
with the dotted vertical gray line) arises from the UA-CA
intersection in the strongly interacting case and the pull-down
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FIG. 11. Polariton antibunching as a function of polariton interactions. (a) Antibunching on the two polariton branches, showing the much
greater UP antibunching due to the proximity to the UA line, even at very small interactions [zoom-in (b)]. An optimum is obtained for a
finite value of interactions, in contrast to antibunching on the LP line which is optimum in the Jaynes-Cummings limit U — oo. The solid
lines in (a) show the optimum value of g» on the LP (black) and the UP (red). On the UP, where it is significantly stronger, this is due to the
intersection, or proximity, between UA and CA, until interactions get very large, U/y 2, 10, where another local minimum overtakes and the
UA + CA carries on as the dashed line. (c) Details of the proximity (top) and intersection (bottom) effect for the small and high interactions,
respectively. The vertical line shows the minimum antibunching on the UP line, which is CA. (d) Location on the UP line where to drive the
system depending on its interaction U /y, to optimize its two-photon antibunching.

effect from their proximity in the low-interaction one. The
detuning that minimizes g'» on the UP line, that is, where to
drive the system to optimize its bright antibunched emission,
is shown in in Fig. 11(d). Here again, one can compromise
antibunching for a stronger signal by reducing the detuning.
More than the antibunching per se, these results could be
particularly attractive to accurately estimate the strength of
polariton interactions.

We conclude with a brief consideration on the role of de-
phasing on the effects we have discussed in this text. Although
they also are of a general character, we discuss them in the
context of polaritons only. Pure dephasing can be included
to a system’s dynamics by adding to the master equation the
Lindblad term (yg/2)L;t,p with y4 the dephasing rate. This
describes loss of quantum coherence, and has the overall ef-
fect of spoiling correlations: damping superbunching and an-
tibunching, both getting closer to 1 from their respective sides
of g® = 1. This affects as well our homodyning configura-
tion, where we can restore or impose infinite superbunching
and exactly zero antibunching to leading order in the driving,
in absence of dephasing. This becomes impossible when y, #
0, even in the vanishing driving regime [64]. On the other
hand, the response of conventional and unconventional fea-
tures to dephasing is very different, confirming their distinct
nature and character. Namely, conventional features are much
less sensitive to dephasing and remain mostly undisturbed for

small values of dephasing as compared to the linewidths of
the bare states, i.e., when y,/y, < 1 [18]. Above that point,
corresponding to considerable dephasing rates, conventional
features start to fade away although slowly and still exhibit
a remarkable resilience. In comparison, unconventional fea-
tures, which are due to interferences, are extremely fragile and
their very good values without dephasing are strongly affected
by its presence. The behavior of the intersection of CA and
UA is interesting in this regard. Figure 12(d) shows the evolu-
tion of g for three types of antibunching: (i) the intersection
of UA and CA, identified by a circle in Fig. 12(b), (ii) CA, and
(iii) UA on the cuts in Fig. 12(c). One can see, again, how CA
is more robust to dephasing, remaining essentially unaffected
until y, becomes a significant fraction of y,. In contrast,
UA is quickly spoiled by y,. Interestingly, the intersection
behaves like both types, being strongly affected when it is
very small and exhibiting the same type of resilience to
dephasing as CA when its antibunching becomes of the same
magnitude.

Another interesting role of dephasing goes beyond af-
fecting the existing features, and brings new ones, namely,
additional bunching resonances appear with y, # 0, which
could also be considered for spectroscopic applications so
as to estimate the amount of dephasing present in a system.
This is shown in Fig. 12, where the correlation landscape
is shown for a small dephasing rate (y,/g = 0.1y;). Arrows
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FIG. 12. Effect of dephasing on photon correlations g2. In (b),
the correlation landscape scanning in frequencies, with two cuts
shown in (a) and (c) at w,/g = —3 and 8, respectively, along with
their dephasing-free counterparts (light blue). Some of the anti-
bunching and bunching peaks, related to unconventional features,
are strongly suppressed whereas conventional lines are left almost
untouched. Additionally, new dephasing-induced lines emerge, la-
beled I and Il in (a)—(c). (d) Shows the robustness of the antibunching
against dephasing: (i) for the UA 4 CA intersection [marked with
a gray circle in (b)], (ii) for CA, and (iii) for UA at the position
shown in (c). Parameters: g=1, ¥, =0.1, ,=0.01, U =0.5, x =0
(cavity driven), and y, = 0.1y,

point at the two new lines that are dephasing induced. They
are also shown in two cuts at w,/g = —3 and w,/g =8, in
Figs. 12(a) and 12(c), that compare the case with (dark blue)
and without (light blue) dephasing. The additional bunching

peaks correspond to transitions between polariton energy
levels. Consequently, the line I (at negative detunings) fulfills

o, = B — E® (73)
while line II (at positive detunings) is given by
oL =E® —EWY, (74)

where El(k) are the energy levels of the few-particle (up to
k = 2) polariton states, which can be obtained in closed form
but yielding awkward expressions. We give here the first-order
term in the interaction U under strong-coupling conditions

(&> Ya» Vb):

Eéz) =wa+a)b+iU,

R (75a)
Nf) = w, + wp £ 2R
2 . — . — 2R
L & + (W, — wp)[(wg — @p) F 2R] U, (75b)

8R?

with R = /& + (0, — wp)?/4, and EV = EV of Eq. (57)
since in absence of interactions and transitions, the lower-
polariton energies coincide with the one-polariton excitations.
One polariton, from the upper or lower branch, is emitted,
leaving some room for a second polariton to be radiated. The
incoherent contribution to the field is no longer depleted to
second order, whence the origin of these transitions.

VIII. SUMMARY AND CONCLUSIONS

If one mixes a coherent state with a quantum state, such
as a squeezed state, depending on their relative amplitudes
and phases, one can tune the statistics of the resulting state
from superbunching to antibunching, although a coherent state
has no correlations and a squeezed state is always super-
Poissonian. This is the manifestation at the multiphoton level
of the well-known “not just the sum” principle of interfering
fields, whereby their combination can result in a total that
has opposite characteristics. Indeed, bringing the two-photon
nonzero amplitudes out of phase will result in two-photon
antibunching in the total field, if they otherwise differ in their
one- and three-photon components, so the effect is, again,
neatly produced with a squeezed and coherent states. As
amplitudes go to zero, the correlations can actually diverge
or vanish completely. This simple phenomenology turns out
to be at the foundation of a large body of results in coher-
ently driven systems, where they have been branded as an
“unconventional photon blockade,” in reference to the con-
ventional blockade scenario due to nonlinearities that act as
a photon turnstile. This unconventional mechanism produces
much stronger correlations and is particularly noteworthy in
not relying on strong nonlinearities. For these reasons, it has
triggered an intense research activity with a thriving liter-
ature [39-42,56,73-83] that studied considerable variations
of the effect at the two-photon level, due to an exagger-
ated appreciation of g to quantify single-photon emission
[84]. We have shown how this can be fruitfully understood
in several platforms (including resonance fluorescence, the
Jaynes-Cummings model, and microcavity polaritons) as the

063824-19



EDUARDO ZUBIZARRETA CASALENGUA et al.

PHYSICAL REVIEW A 101, 063824 (2020)

simple admixing of a coherent state with a quantum state
which, to lowest order in the driving, is a squeezed state,
thereby realizing self-consistently and in a dynamical setting
the paradigm of feeding a beam splitter with a coherent state
and a squeezed state, producing a displaced squeezed thermal
state on one output port. We have shown in particular how one
can control externally the coherent field to tune the statistics
of the overall emission. In coherently driven quantum optical
systems, the coherent state does not have to be provided
externally but can be seen to come directly from the mean
field, while the squeezed state, or other types of quantum
states, come from the fluctuations. For given system param-
eters, a particular configuration of detunings will realize the
admixture that yields optimum antibunching and another the
optimum superbunching. Scanning over the full range of these
parameters, one can thus reveal features in a landscape of
correlations, that are clearly explained in terms of the coherent
and squeezed states admixture. At low driving, we have shown
through a decomposition of the Glauber coherence functions
g™ in terms of coefficients Z, ., etc., that embed various
types of quantum correlations, how these features are further
tightly related to so-called conventional blockade correlations,
which pertain to the dressed states of the system. Since both
mechanisms rely on low driving, even when one is dealing
with a two-level system, the driving is too weak to bring the
nonlinearity to imprint a non-Gaussian character to the field.
Still, both the conventional and unconventional scenarios, that
we prefer to tag on the statistics itself rather than on an alleged
“blockade,” indeed provide two fairly distinct families of
features, with their own characteristics that one can recognize
throughout platforms. The two mechanisms combined with
the two types of correlations bring us to a classification of UA,
UB, CA, and CB for unconventional antibunching, unconven-
tional bunching, conventional antibunching, and conventional
bunching, respectively. Their main characteristics are as fol-
lows: unconventional features are photon-number dependent,

i.e., are realized for a given n that can be chosen, but one at a
time, with a typical scenario being a small g» but large g™
for n > 2, and this takes place in different locations of the
parameter space. In contrast, CA occurs to all orders simulta-
neously and is pinned to the same underlying structure. Un-
conventional features are typically stronger than conventional
ones, also not requiring, as already observed, strong nonlin-
earities. In the limit of vanishing driving, they become exactly
zero (antibunching) and infinite (superbunching) to leading
order in the driving. This manifests itself in much sharper
resonances, in particular when contrasted to the conventional
ones sitting nearby. But unconventional features are also more
fragile, to dissipation, dephasing, and driving. Because of the
latter, they also suffer from a weak signal. Nonetheless, in the
full landscape of correlations, we have shown the existence
of intersection points of U and C lines where, remarkably,
both qualities of the two types are produced, namely, for the
case of antibunching, one can get bright, robust, and all-order
antibunching, these being features of CA, that is also very
strong even in weakly interacting systems, this being the main
feature of UA. This is particularly appealing for a platform
such as microcavity polaritons, where antibunching is highly
sought but remains so far extremely weak. In the configuration
we propose, which involves the upper polariton branch instead
of the usually favored lower one, we predict the existence
of a highly populated, strongly antibunched emission. While
the interest of such a point for applications is unclear given
the Gaussian character of the emission, it would certainly be
valuable for spectroscopic purposes to help in measuring the
polariton-polariton interaction and/or dephasing rate. Over-
all, at the theoretical level, our picture unifies a consider-
able amount of phenomenology related to photon statistics
in coherently driven systems, which, whether of interest or
not for applications, should help be valuable to synthesize
the gigantic number of minor variations of a fairly simple
theme.
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