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Frequency-resolved Monte Carlo
Juan Camilo López Carreño   1,2, Elena del Valle1 & Fabrice P. Laussy2,3

We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing 
us to simulate the emission of photons of known energy. Statistical processing of the photon clicks 
thus collected agrees with the theory of frequency-resolved photon correlations, extending the 
range of applications based on correlations of photons of prescribed energy, in particular those of a 
photon-counting character. We apply the technique to autocorrelations of photon streams from a 
two-level system under coherent and incoherent pumping, including the Mollow triplet regime where 
we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-
photon emission events.

The Monte Carlo method, of estimation by random sampling, was invented by Ulam as a practical way to estimate 
the chance of winning a game of solitaire, that a direct combinatorial approach had proved too challenging for 
the then convalescing scientist who was playing cards on a sick leave1. Since this had direct applications for the 
more “serious” problems tackled at Los Alamos (this was in 1946), such as the computation of neutron diffusion, 
the activity had to receive a codename, which came after the Monaco ward, famous for its casino. The technique 
indeed relies on chance by sampling randomly to get hold of a small but representative enough sample to describe 
a system. This is a surprisingly powerful technique that combines efficiency and accuracy, with applications in 
virtually all fields of human endeavours2.

In quantum physics, the Quantum Monte Carlo technique finds many ramifications in several fields3. In the 
context of interest in this work, that of quantum optics, several methods have been developed in the early 90s (see 
ref.4 for a review). Of these, the quantum jump approach5–8 (see Ref.9 for an introduction) is particularly appeal-
ing as it links the wavefunction collapse to the emission of a photon. Assuming an ideal detector covering the full 
4π solid angle surrounding the emitter, this allows to perform a computer experiment of photo-detections. From 
such “clicks” (as we will call a detected photon), one can for instance compute the Glauber correlation functions 
g(n) that measure the deviations of intensity correlations at the nth order from uncorrelated light, but one can also 
compute less easily accessible quantities such as exclusive probability densities, e.g., detecting the next photon at 
a time τ after one detection, with no other photon in between (g(2) assumes any photon rather than the next one), 
or distributions of time delays between nearest neighbours, probabilities to detect any given number or even 
configuration of photons in a time window, or any other type of binning “experiment”. Such Quantum Monte 
Carlo-generated photons have also been used to support the introduction of the N-photon “bundle”10, to distin-
guish the case of N-photon sources from strongly-correlated emission at the N photon level.

In this text, we apply the quantum-jump Monte Carlo technique to the case of filtered emission, that is to say, 
as applied to a stream of photons going through an interference (i.e., Lorentzian) filter. Mean values for the cor-
relators can be conveniently obtained with the theory of frequency-resolved photon-correlations11. This theory 
predicts strong correlations in frequency windows that had been neglected by both theorists and experimentalists 
until recently12,13, as they lie far away from the luminescence peaks. Such correlations can clearly be turned into a 
resource and when technology will be mature to exploit photons as qubits, this aspect will certainly become com-
pelling. As it should be useful to go beyond mean values and get access to time series for a variety of purposes, one 
could turn to the Quantum Monte Carlo technique applied to color-resolved photons. While the quantum Monte 
Carlo method has been used to compute the power spectrum as well as time-series of photon emission14–20, its 
combined use for both time and energy-resolved photons has, to the best of our knowledge, not been provided 
before in both a practical and exact form, as the few attempts in this direction21,22 have involved a cavity in the 
weak-coupling limit, which comes at the price of vanishing signal or approximate correlations if coupling of the 
filter is not weak enough. Monte Carlo methods have been used instead for their computational advantage or to 
access particular configurations such as the resonance fluorescence spectrum of an effective-three level system 
in a bright period exclusively (such systems are noted for their intermittent emission). In contrast, our approach 
allows to extract streams of photons from any frequency windows of a quantum source, using all the signal 
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theoretically available and taking into account self-consistently the effect of its filtering, with an exact treatment 
of its effect on the correlations. This allows to revisit photon-counting experiments with the added energy degree 
of freedom, that are already challenging without the frequency constrains.

In this text, we first prove that the technique is exact and, subsequently, we cover two cases for illustration. 
Namely, we show the effect of filtering a two-level system, and describe how this spoils the antibunching and 
quantum character of such sources in a practical context, although from a theoretical point of view, the saturated 
emitter is the brightest single-photon emitter, but of photons with wildly fluctuating frequencies (so not indin-
stinguishable). We illustrate how the loss of antibunching in time deviates notably from the single-exponential 
approximation used in the literature23. We compare both the cases of coherent and incoherent excitations at low 
pumping. Then, at high pumping in the coherent case, thus bringing the problem in the Mollow triplet regime, we 
show how this turns a simple system into a versatile, tunable quantum source, with applications such as quantum 
spectroscopy24–26 or photon sources with tunable statistics27. We will also address arguments28 that imply that the 
strongly correlated emission is an artifact of normalization, which we will rebute by explicitly exhibiting these 
strongly correlated photons thanks to the Monte Carlo simulations. Before that, however, we briefly summarize 
the theory of frequency-resolved photon correlations and its main conclusions, which are to be found in greater 
details elsewhere11,12,22,24,29–33, and prove that the proposed Monte Carlo method scheme is Mathematically equiv-
alent to this exact theory.

Theory
Although the process of filtering the light emitted from an optical source has a clear interpretation–the emitted 
photons are detected in a certain frequency window–its theoretical description used to be far from trivial34. With 
the introduction of the sensor method11, this became a straightforward task no more complicated than any old 
problem of computing quantum correlators, getting rid of all the complicated tasks of normal-ordering and 
time-integrals in spaces of many dimensions. The technique relies on coupling the system to sensors with strength 
ε and taking the limit of vanishing coupling. In such a limit, it is enough to consider only two levels of the sensors 
as their populations remain 1, without affecting the system’s dynamics. The computation of normalized corre-
lators results in quantities that are ε independent to first order and exact in the limit |ε| → 0 (taking, in general, 

ε ∈ ). These results are also absolute in the sense that they do not depend on detection efficiency or other details 
of the measurement, but characterize the source’s emission in given frequency windows. Alternatively35, such a 
coupling can also be made through the so-called “cascaded formalism”36,37, that describes the dynamics of “detec-
tors”, which are physical objects with a sizable coupling to the source (unlike sensors that have vanishing cou-
pling) but that also do not alter the dynamics of the source, regardless of how strongly they are affected by it. Each 
method presents some advantages: the sensor method is straightforward to implement while the cascading for-
malism allows to characterize the detector’s dynamics beyond normalized correlations. An important difference 
with respect to computational cost is that while the sensor is typically described by a two-level system, the detec-
tor must be described by an harmonic oscillator, since it does get populated, whereas the sensor only acts as a 
probe in the limit of vanishing coupling. As a result, the sensor always provides exact results as a two-level system 
while the detector must be truncated high enough to provide a close-enough approximation, which depends on 
the dynamics of the system, and is therefore a tricky question. Furthermore, when considering cross-correlations, 
instead of N two-level systems, one is dealing with N harmonic oscillators and the problem becomes numerically 
forbidding, while the sensors’ Hilbert space scales as 2N which is still tractable for N much larger than anything 
that has been considered so far experimentally. For autocorrelations of the Nth order with the sensor method, one 
can also use an harmonic oscillator truncated to N excitations instead of N two-level systems degenerate in fre-
quency, which is also exact and with no need of checking convergenve for higher truncations, as is the case of the 
cascaded formalism. So in cases where correlations are requested rather than an actual signal, we believe the 
sensor method to be preferable, as it is both more efficient and more robust. In the present text, however, we spe-
cifically require a signal and will therefore turn to the cascaded formalism.

The mathematical equivalence of the two approaches for normalized autocorrelations can be established as 
follows. On the one hand, the sensor method “plugs” sensors to the dynamics. Formally, calling σ the annihila-
tion operator of a source and ξ that of a sensor probing it, we can describe their joint dynamics by a Liouvillian 
equation

ρ ρ ω ξ ξ εσ ξ ε σξ
γ

ρ ρ∂ = + + + + +
Γ

σ ξ
σ
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† † ⁎ †i H[ , ]
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where Hσ is the Hamiltonian that describes the internal dynamics of the source, γσ is the decay rate of the source, 
Γ is the decay rate of the sensor and  ρ ρ ρ ρ≡ − −† † †c c c c c c2c . The dynamics of an arbitrary operator 
ξ ξ σ σμ ν† †m n under the action of this Liouvillian is described with the notations of ref.11, by the equation (we set  
ħ = 1 along the paper)
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where 1 is the unit matrix, T± are normal-ordering superoperators for the σ operators and ω→[μ, ν] is a vector of 
correlators for the μth and νth powers of the sensor operators ξ, ξ† and spanning in normal order all powers of the 
σ, σ† operators, i.e., ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩† † † † † †

 [ , ] ( , , , , , )m n Tω µ ν ξ ξ ξ ξ σ ξ ξ σ ξ ξ σ σ→ ≡ µ ν µ ν µ ν µ ν . The O(ε2) notation means 
that all other terms are of higher order in ε. The matrix M provides the dynamics for the source, ∂tω

→[0, 0] = Mω→



www.nature.com/scientificreports/

3Scientific RePorTs |  (2018) 8:6975  | DOI:10.1038/s41598-018-24975-y

[0, 0] + O(ε2), and is independent of the sensor at the lowest order in ε. At this stage, we do not assume any prop-
erty of σ or ξ, which could be bosonic (in which case μ, ν, m and n are unbounded) or fermionic (in which case μ, 
ν, m and n are 0 or 1). Equation (2) can be integrated, which yields

ω µ ν ε µ ν ω µ ν µ ω µ ν ν ω µ ν
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where ε = |ε|eiθ. This in turn can be solved recursively, down to ω→[0, 0] where the equation self-truncates. Each 
element ω→[μ, ν] is found to be, by inspection of Eq. (3), of the order |ε|μ+ν, to the smallest order in |ε| (leading 
when |ε| → 0). Note that only the absolute value of the coupling can be extracted as a common factor in Eq. (3). 
This results in (μ + 1)(ν + 1) − 1 nested equations and unknowns in order to compute a given element ω→[μ, ν]. 
More details on this derivation can be found in the Supplementary Material of Ref.11. The important point is that 
normalised nth order correlators, Γg n( ), are ratios of the first component of ω→[n; n] (that is, ξ ξ〈 〉† n n ) divided by the 
n-th power of the first component of ω→[1; 1] (that is, ξ ξ〈 〉† ), itself of order |ε|2, so that in such a ratio ε is cancelled 
to leading order. Although higher-order terms would spoil this cancellation, they become negligible as the sensor 
coupling is made smaller. Therefore, in the limit |ε| → 0, the result becomes exact.

On the other hand, the cascaded formalism, which aims at exciting a target without affecting the source, 
provides a similar type of cancellation, although not restricted to vanishing coupling. From a causality point of 
view, it is clear that such a source/detector scenario where only one affects the other can be realized. The source 
that emitted a photon towards a detector may not even exist anymore by the time the detector is excited. This is 
achieved formally through interferences that cancel the back-action from the detector to the source. The master 
equation describing this asymmetric coupling reads
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The last three-terms of Eq. (4) can be re-written in the Lindblad form as
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where χ γ σ χ ξ= − + − Γσô (1 ) (1 )1 2  is the joined decay operator of the whole system, source and detector, 
and the interpretation of the factor χk becomes that of factors that quantify the amount of signal that each part, 
source and detector, generates on its own and that the joined system generates as a whole. The detector, which 
must have a finite lifetime to couple to the source, thus also has an intrinsic frequency window with effect of fil-
tering the emission it detects, whence the connection to the sensors formalism. The factor α = (1 − χ1)(1 − χ2), 
for 0 ≤ χ1, χ2 ≤ 1, takes into account that the source can have several decay channels. This is required for instance 
when only fluorescence is wanted without contamination from another source, e.g., a laser exciting it (experimen-
tally this is typically achieved by detecting at right angle from the exciting beam).

Our proof proceeds by showing that ξ ξ σ σμ ν† †m n has the same equation as in the sensor formalism, by com-
puting explicitly the equation for ∂tω

→[μ, ν] in the cascaded formalism, Eq. (5). This reads, to all orders in the 
coupling in this case:
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Remarkably, this equation has the same form as Eq. (2) with ε αγ→ Γσi . Even though ε is complex and a 
vanishing quantity in Eq. (2), with higher order corrections, and αγ Γσ  is real and finite in Eq. (6), both methods 
provide exactly the same normalised correlators, as these coupling parameters enter in both the numerators and 
denominators with the same power and cancel out. The result becomes exact for vanishing coupling in the case of 
sensors and is exact in all cases with the cascaded formalism, regardless of their normalisation. Note as well that 
θ, the phase of the coupling ε, has an effect on the dynamics only if the Lindblad equation features products of 
different operators in its dissipative terms, which is the case for the cascaded formalism with ô that brings cross 
terms of σ and ξ. The sensor formalism, however, has no such joint decay emission and the phase of ε does not 
play any role, so that ε could have been set real. This achieves to prove the mathematical equivalence of the sensor 
method with the cascaded formalism for the computation of normalized correlators.

Since the sensor formalism has been shown11 to be equivalent to normalized photon correlations according to 
photo-detection theory34, the above equivalence of the sensor and cascaded formalisms shows that applying the 
quantum Monte Carlo method to the detector38 realises a sampling of the emission in the corresponding frequency 
windows, from which one can reconstruct the frequency-resolved photon correlations. That is to say, this allows us 
to simulate the photon emission with both time and energy information, which is what we are going to illustrate in 
the following. Note that with both Eqs (2) and (6), any given correlator ξ ξ〈 〉μ ν†  can be computed exactly (by recur-
rence) in terms of lower order ones ξ ξ〈 〉μ ν′ ′†  only, with μ′ ≤ μ and ν′ ≤ ν. This means that both methods can be 
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applied using N two-level systems as detectors at different frequencies, in order to compute cross correlations, or 
with a single harmonic oscillator truncated at N excitations, to compute the Nth order monocromatic autocorrela-
tion function 

Γg N( ). This is however not sufficient with the cascaded formalism for computing the density matrix (full 
state) of the detectors or for doing Monte Carlo simulations of the emission. In such cases, one must model the N 
detectors as harmonic oscillators with a high enough truncation to provide converged results. The simulation is 
conveniently implemented through the quantum-jump approach. The dynamics of the system is thus described by 
a wavefunction ψ t( )  that occasionally undergoes a process of “collapsing”, attributed to the emission of a photon, 
that one records in the simulation as a detector would register a click in an experiment. The collapse is decided in 
each infinitesimal time interval δt → 0, where the evolution of the wavefunction is governed by two elements: a 
non-Hermitian Hamiltonian and random quantum jumps. In a system described by the master equation 

ρ ρ ρ∂ = + ∑i H[ , ] (1/2)t k ck
 , the non-Hermitian Hamiltonian is constructed as = − ∑

∼ †H H i c c( /2) k k k, and the 
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depending on whether the system undertook or not a quantum jump, respectively. The probability that this hap-
pened in the interval ~δt due to the operator ~ck is proportional to the mean value of this operator, namely 

⟨ ⟩†ψ ψ δ= | |p c c tk k k . For the system described by the master equation (4), the collapse operators are (cf. Fig. 1)
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The Monte Carlo approach within the cascaded formalism context has already been considered37 but without 
connecting it to frequency-resolved correlations. Now that we have established this correspondence mathemat-
ically, we illustrate in the following how the clicks collected through Eqs. (4,5), in the frequency window deter-
mined by the detector, match indeed with the correlations predicted by the theory of frequency-resolved photon 
correlations11. Here, we apply this technique to the driven two-level system, under both coherent and incoherent 
emission, at low and large pumping. While some of the underlying physics has been published elsewhere, this 
will allow us to revisit it from another angle and provide additional results. We will consider both the cases of 
autocorrelations and cross-correlations. Although the same principles could be extended to even more than two 
detectors, we postpone such discussions and their further applications to future works.

Figure 1.  Scheme of the setup to measure the frequency-resolved correlations of the light emitted by a source, 
whose energy is centered at ωσ and has a decay rate γσ. While a fraction of the emitted light goes unfiltered to 
the open space, to which we refer to as the “unfiltered emission” and which is described by the quantum jumps 
of the operator c2 in Eq. (7), the remaining fraction is used to weakly drive the sensor, which has frequency ωξ 
and decay rate Γ, which is also the bandwidth of the sensor. The emission from the sensor can also be separated 
into two streams, depending on whether the emission from the sensor is mixed or not with scattered light from 
the source (e.g., the emission of the sensor and the scattered light might follow different spatial paths). The 
case without the scattered light corresponds to the “filtered emission” which can then go to a detector D or a 
Hanbury Brown-Twiss setup. It is associated to the operator c3 of Eq. (7), while the mixture of light is described 
through the operator c1 of Eq. (7).
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The two-level system.  The simplest system in quantum physics is the two-level system. We find it inspir-
ing that it is still a Research problem, constantly posing new questions. Manifestly, in a quantum universe, the 
two-level system is as complicated as anything else. We first discuss a very basic problem, namely, the effect of 
filtering on the photon emission from the Monte Carlo point of view. Starting with incoherent pumping, at rate 
Pσ, with Hamiltonian

ω σ σ=σ σ
†H , (9)

for a two-level system with free energy ωσ, and Liouvillian

 ρ ρ γ ρ ρ∂ = + +σ σ σ σ σ†i H P[ , ] ( /2) ( /2) , (10)t

with γσ the inverse lifetime, one finds a simple enough dynamics of Glauber’s second order correlator:

τ γ τ= − − +σ σg P( ) 1 exp[ ( ) ] , (11)(2)

with, in particular, g(2)(0) = 0, that is, perfect antibunching. A (conventional) Monte Carlo simulation using the 
technique explained above, is shown in Fig. 2. The upper panel shows the fluctuations in the detection times of a 
million photons from such a source. As such, this realizes a random walk, similar to a random (Poissonian) pro-
cess, and at large timescales there is nothing noticeable. On the short timescale, however, one can observe clear 
correlations of antibunching, as shown in the series of clicks indicated by blue ticks in Fig. 2(c). Namely, photons 
tend to repel each other and appear more orderly than if they would be uncorrelated, as is the case of the second 
series of photon detections, shown for comparison with black ticks in Fig. 2(d). The uncorrelated series exhibits 
the counter-intuitive “Poisson clumping” or “Poisson burst” effect39, made famous by von Bortkiewicz’s horse 
kicking casualties in the Prussian army and still of recurrent appearance in the medias as intuition repels the 
notion that a burst of accidents in, say, a hospital, is a natural random process rather than negligence. The 
strongly-correlated character of the two-level system emission becomes clear and compelling when computing 
intensity correlations g(2)(τ) from the clicks, defined as the density of probability of finding two photons with a 
time difference τ. Specifically, from the times of detection ti, we compute ti − tj for all 1 ≤ i ≤ N with N the total 
number of detected photons (here N = 106) and compare the density of time differences to that from uncorrelated 

Figure 2.  Monte Carlo method on a two-level system. (a) Times of emission for 1 000 000 recorded photons as 
compared to their mean emission rate, exhibiting a classical random walk. (b) Zoom of (a) in the highlighted 
window. (c) Zoom of (b) in the highlighted window, with detected photons now displayed in absolute time 
rather than relatively to their mean emission time. Locally, one can observe a structure in their statistical 
distribution, with a tendency of ordering and mutual repulsion. This becomes obvious when comparing with 
uncorrelated photons with the same emission rate, shown in (d). The latter exhibit Poisson bursts. (e) Intensity 
correlations g(2)(τ) computed from the one million points, in two timescales, featuring a clear antibunching. The 
inverse lifetime of the two-level system sets the time unit.
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clicks with the same intensity. Note that in a typical experiment, a first photon starts a timer and a second stops it, 
and a distribution of the time difference between successive photons is used as a good approximation. In our case, 
we compute the exact correlations by collecting all the time differences within the correlation window of interest. 
This is shown for |τ| ≤ 50/γσ in Fig. 2(e), left. One sees an overall plateau, indicating that photons have the same 
distribution for long-time separations as if they were emitted by a Poisson process (randomly). But one also 
observes a clear dip at τ ≈ 0, indicating that at such close distances, photons behave very differently than uncor-
related ones, namely, the occurrence of small time delays is strongly suppressed. This is better resolved in Fig. 2(e), 
right. Such a behaviour defines antibunching, g(2)(0) < g(2)(τ), with coincidences, i.e., simultaneous detection of 
two photons, less likely to occur than other closely spaced detections, with perfect suppression of coincidences 
when g(2)(0) = 0. Since these correlations wash out at long times, one has τ =τ→∞glim ( ) 1(2) . The time it takes to 
reach this plateau is the second-order coherence time. We do not need to overlap these results of the Monte Carlo 
signal with the theory curve, Eq. (11), since, with one million points, it is exact to within the plot accuracy. Beside 
the statistical noise, that starts to be apparent for τ γ> σ1/(2 ), the Monte Carlo data provides a smooth curve in 
the window of strong correlations. In our simulation, the Δt was 0.01/γσ and the binning size was taken twice as 
large, corresponding to the two closely-spaced vertical lines on the right panel of Fig. 2(e), bounding g(2)(0) from 
below due to this small uncertainty. With a binning size equal to the Monte Carlo timestep, one recovers the per-
fect antibunching at the origin, although on two grid points, so also producing a small error (the result would be 
perfect only in the limit of vanishing timesteps).

These results provide the background for our approach in the filtered signal. The general question is, what 
happens to the emitted photons if a filter is interposed on their way to the detector? This does not simply subtract 
a fraction, it also redistributes those that make it through, to provide them with possibly very different statistical 
properties, as we now discuss in more details.

Emission of a filtered two-level system
Incoherent excitation.  The effect of a Lorentzian filter on the statistics of emission of an incoherently 
excited two-level system is shown in Fig. 3. The theory predicts thermalization and loss of antibunching with 
narrowing filtering. The exact way how this happens is discussed elsewhere23, and the theoretical result is shown 
on the density plot in Fig. 3 along with eight Monte-Carlo simulations of roughly 10 000 clicks each (25 000 for 
the narrowest filter in case viii). Extracts of the recorded clicks are shown, comparing them, 1) in the same time 
window (black ticks), with effect of having much less clicks for narrower filters, and also 2) when rescaling the 
unit of time so that the intensities are the same (green ticks). In the latter case, one can compare the statistical 
distributions, and observe the transition from antibunched clicks (i) to thermal ones (viii) passing by auxiliary 
distributions. In the former case, one observes the characteristic antibunching, equally-spaced like distribution of 
a two-level emitter. In the latter case, one finds the wildly fluctuating thermal (or chaotic) light, with pronounced 
bunching in the form of long gaps of no emission followed by gusts of emission. This can be differentiated even 
with the naked eye from the Poisson distribution, whose tendency for “clumping” does not get as dramatic as the 
thermal case. One can follow the transition neatly from these various sets of clicks, passing by the case of almost 
uncorrelated light. Since the isoline τ =Γg ( ) 1(2)  is not straight (it is shown as a dotted line in the density plot of 
Fig. 3), the passage from antibunching to bunching does not transit through exactly uncorrelated (or coherent 
light), although the deviation is too small to be appreciated on a small sample. To observe such fine variations, one 
needs to acquire a large statistical ensemble and condense the correlations in a single object, such as Γg (2), as is 
shown in the eight panels at the bottom of Fig. 3. The case v of close-to-uncorrelated light is also shown separately 
from the Monte Carlo data to reveal its fine structure. The other cases have a simpler shape of a dip that turns into 
a hump. The correlation time also changes dramatically, as is observable both from the density plot and the Monte 
Carlo histograms. As the emission thermalizes, its fluctuations occur on longer timescales. This is the reason for 
the increased noise in panels vi–viii. There, one should increase the binning and consider larger time windows, as 
shown in green for case viii that assumes a binning of Δtγσ = 1 instead of 0.1 for the other cases, and plot the 
correlations in a time window |tγσ| ≤ 100 instead of 10, as indicated on the respective axes, recovering the excel-
lent agreement with theory displayed by the antibunched cases.

Now in possession of the statistical data, and with the insurance of its accuracy given its agreement with the 
theory, it is possible to undertake various types of analysis that would not be so straightforward theoretically, 
as has been described in the introduction. We will not go in this direction now and leave for future works and/
or other colleagues (the statistical data is available on a public repository40). Instead, we now turn to the case of 
coherent excitation, that also presents features of interest.

Coherent excitation.  The case of coherent excitation is obtained by complementing the Hamiltonian in Eq. (9) 
with the driving of the two-level system, σ σΩ +†( ), and dropping the last term in the master equation (10). The case 
of filtered coherently driven 2LS is shown in Fig. 4. Here as well, there is thermalization, although this occurs in the 
case of strong-driving41, it is interesting to consider the effect of filtering and approach it from the Monte Carlo per-
spective. Taking one slice featuring these oscillations, we collect 105 clicks, a small portion of which is shown as ticks 
at the bottom of Fig. 4. Computing the autocorrelations, we find indeed strong oscillations from a very good anti-
bunching with steep bunching elbows, in agreement with the theory. This produces even more pronounced correla-
tions in the photon-detection events, where the spacing appears more regular and between clumps of photons. As 
far as continuous streams are concerned, this suggests that such strongly-oscillating g(2) do in fact provide more 
ordered time series than the conventional antibunching of the type of Eq. (11). Such questions are however beyond 
the scope of the present text. We conclude this Section with further comments on the Heitler effect (coherence of the 
Rayleigh peak), that is broken at high pumping, but is eventually restored with narrow-enough filtering. First, 
regarding the emergence of a thermalization similar to that of incoherent driving, cf. Fig. 3, this is obtained when one 
enters the Mollow triplet regime42. In this case, the luminescence has split into a triplet lineshape and, when filtering 
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at resonance (as is the case here), one filters the central peak alone, which is known to correspond to the spontaneous 
emission of a photon that leaves the state of the dressed two-level system unchanged43. As such, the spontaneously 
emitted photons react to filtering in a similar way than the incoherently pumped two-level system, hence the 
observed bunching for narrowing filters linewidths. The similarity is only partial, however, as instead of thermaliza-
tion, with =Γg (0) 2(2) , the transition is to a super-chaotic state, with =Γg (0) 3(2)  in the limit of infinite pumping12 
(for the parameters considered here, we find ≈ .Γ Γgmax (0) 2 2(2) ). More strikingly, when filtering well within the 
central peak, one then isolates the Rayleigh (δ) peak again and reverts to the low-pumping case, with the statistics 
becoming uncorrelated, as shown in Fig. 4. Large filtering windows, on the other hand, collect the emission from all 
three peaks and reproduce the Rabi oscillations, which is the case selected for the Monte Carlo sampling. We explore 
in more details the opportunities offered by the Mollow triplet in Section 4.

Effective quantum state.  In this Section, we adapt the method of Zubizarreta Casalengua et al.44 to get 
the photon distribution p(k) of a frequency-resolved emitter, i.e., the probabilities for it to have k photons, which 
are, equivalently, the diagonal elements of its effective density matrix. Namely, the frequency-filtered source is 
regarded as an effective source of its own. Since filtering typically turns the original source into one of another 
kind, the effective source gets attributed a new annihilation operator s rather than the original σ. As we consider a 
photon source and we know that regardless of the original emitter, its filtering can produce an arbitrary number of 
photons, we assume that s is bosonic. The detector and the effective source are of course related. On the one hand, 
the normalized correlators are identical, since the detector measures faithfully the correlations of the source:

Figure 3.  Frequency-resolved emission from an incoherently driven two-level system. The number of events 
(clicks) recorded are close to 10 000 (namely 9976, 9916, 9974, 9927, 9967, 9955, 9860) for the cases i–vii 
respectively, and 25 000 for case viii to get enough signal for the small timescale comparison to the other filters. 
The density-plot is the theoretical τΓg ( )(2)  with the color code indicated (blue for antibunching, red for bunching 
and white for uncorrelated). Filtering leads to thermalization. The transition is slightly more complex than 
merely loss of antibunching. The dotted line shows the isoline τ =Γg ( ) 1(2) . Monte Carlo simulations have been 
done for the eight cuts shown. Samples of clicks are shown in the same time window (black, left) or with 
rescaling to have the same intensity (green, right). There is a neat transition visible to the naked eye between the 
two types of photon statistics. Autocorrelation computed from the clicks are shown in the eight panels at the 
bottom, together with the theory prediction. In panel v, the theory curve is also shown displayed to reveal its 
fine structure departing from τ =Γg ( ) 1(2) . In panel viii, also the case of longer times is shown since 
thermalization goes together with slowing down of the dynamics. For the density plot 1/γσ sets the unit and  
Pσ = 2γσ. The clicks correspond to the emission events of the operator c3 in Eq. (7).
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and as, on the other hand, there is conservation of energy (assuming an ideal detector):
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since the rate of emission from the effective source is also that of detection. We find from combining Eqs (12) and 
(13) the relation between the unnormalized correlators:
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The statistics p(n) of the photon emission from the effective source can now be obtained by inverting the relation 
〈 〉 = ∑ −=

†s s k k n p k( !/( )!) ( )n n
k n
N  (with N large enough) to provide the probabilities p(k) for the effective source 

to have k quanta of excitation, for integer k. In the cascaded formalism, the correlators of the detectors, ξ ξ〈 〉†n n  can 
be computed from the master equation, and are source dependent. The expressions for the population of a detec-
tor being fed by an incoherently and coherently driven two-level system are given by López Carreño and Laussy32 
at resonance. Here, we provide a more general version for the detector at an arbitrary frequency. The incoherent 
case reads (note that there is a typo in Ref.32 with an extra factor 4; the correct result is as given here)

Figure 4.  Frequency and time-resolved τΓg ( )(2)  of a two-level system coherently driven, in its transition from 
the Heitler to the Mollow regime (from left to right). At low pumping, one does not observe thermalization 
(bunching) with narrowing filters. Higher pumping brings both bunching, similar to the case of incoherent 
pumping, and oscillations. The bunching is observed only for moderately narrow filtering as extremely narrow 
filtering goes back to filtering exclusively the Rayleigh peak, with a resurgence of the Heitler effect and 
uncorrelated (or coherent) emission. Wide filtering overlapping the three peaks captures the Rabi oscillations. A 
Monte Carlo simulation of the case highlighted with the dashed line is shown through a small sample of clicks 
(bottom) and the autocorrelation function, compared to the theory prediction. There is a clear structure in the 
photon clicks, that is unlike any of the cases shown previously. The clicks correspond to the emission events of 
the operator c3 in Eq. (7).
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with γij ≡ iΓ + jγσ. From a Monte Carlo simulation in a time T, the detector population is obtained as the ratio 
between the total number of clicks recorded and γσT. This allows to obtain the luminescence spectrum by scan-
ning the detector in frequency (we do not show it but have checked it to be the case). One can now reconstruct the 
diagonal elements of the effective density matrix that, under an unspecified dynamics, is seen through the detec-
tor to yield the recorded photo-detection events. Since this can be achieved from (all) the Glauber correlators and 
the knowledge of the emitter’s mean population (known from the radiative lifetime), one can recover the effective 
p(n) in this way. This allows us to access new classes of quantum steady states, tailored by frequency-filtering. We 
now illustrate how this takes shape in the case already discussed of filtered two-level system emission, starting 
with the case of incoherent excitation. This is shown inFig. 5(a,b) for the filtered saturated two-level system, i.e., 
where the system is held in its excited state by very large pumping, γσ σP , so that the density matrix reads  
p(0) → 0 and p(1) → 1. With Eq. (15) or from the detected clicks, one can compute the population and recon-
struct this quantum state of the emitter, namely, the Fock state p(n) = δn,1 (δ being the Kronecker function). The 
application of a filter turns the system from a two-level emitter to a source able to deliver more than one photon 
at a time, namely, for narrow enough filtering, p(n) ≈ (1 − θ)θn for all n, with θ ≈ 0.01 for the narrowest filter 

(b) (d)

(a) (c)

Figure 5.  Effective quantum state reconstruction from the emission of a two-level system under high (a) 
incoherent and (b) coherent excitation. The various blue areas correspond to different filters linewidths. The 
light filtered in this way is equivalent to an unfiltered emitter whose quantum state has distribution p(n) to have 
n excitations, and is shown in (b) and (d), respectively. For the incoherently driven two-level system, case (a), 
the system is kept in its excited state by large pumping, so that without filtering, one observes a state close to the 
Fock state p(n) = δn,1. Filtering leads to thermalization, with preponderance of vacuum but nonzero probability 
to detect >n 1 particles. The same is observed for the coherently driven two-level system, case (b), but starting 
from p(0) = p(1) = 1/2 due to the no-inversion of a two-level system in presence of stimulated emission. 
Parameters: for incoherent excitation, Pσ = 102γσ (saturating the two-level system). For coherent excitation,  
Ω = 5γσ. The rest of the parameters are as indicated in the figure.
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considered here. We have lost two orders of magnitude for the population but the probability to observe two (resp. 
three) particles is 1% (resp. 0.01%) of that to observe one only, which effectively shows how filtering a 
single-photon source turns it into a black body with nonzero probability to emit n photons. Its population is 
smaller than without the filter, as the latter is rejecting some photons, but the statistical distribution of those that 
go through now corresponds to an altogether different quantum state. A similar situation occurs with coherent 
excitation (when not filtering so much as to isolate the Rayleigh peak), with, for the case shown in Fig. 5(c,d), θ ≈ 
0.025. In both cases, one can see in this way at which point filtering prevents a single-photon source to emit 
non-classical states of light45, for instance by comparing p(1) to ≈ .e3 3 /(4 ) 47 8%, the smallest probability above 
which a state is non-Gaussian46.

Tuneable statistics from the Mollow triplet
Auto-correlations.  The Mollow regime that splits the luminescence into three lines provides in this way new 
natural spectral windows. One of the obvious questions this brings forward is: what is the statistics of the photons 
emitted by the three peaks? (is it the same as the total emission? One could imagine that all three peaks are emit-
ting antibunched light since they ultimately originate from a two-level system. Our discussions so far in simpler 
systems should prepare us to find otherwise). The triplet structure, first computed exactly by Mollow42 but with-
out providing a physical picture as to its origin, can actually be well understood from a simple model, introduced 
by Cohen-Tannoudji et al.: the “dressed atom” 47. In this model, the combined atom + laser is considered as a new 
entity, with a new structure of energy levels, shown in Fig. 6, and in which the transitions between the states 
account for the photoluminescence. On the basis of this picture, by considering two-photon transitions, one can 
foresee some correlations between the peaks. The transitions → ± →p q  for any p, q = + or −, that go down 
the Mollow ladder, could be expected to result in bunching. In contrast, since one cannot chain in this way 

→ −p  and + → q  or → +p  and − → q , one can expect antibunching. Inspection of all the combina-
tions of two-photon relaxations “suggests” that:

•	 each side peak is antibunched (cases 8 and E in Fig. 6),
•	 the central peak comes with both bunching (2 and 4) and antibunching (9 and F),
•	 the central peak comes with both bunching (0, 1, 6, 7) and antibunching (A, B, C, D) with each side peaks,
•	 the side peaks are bunched together (3, 5).

(One could also go further and consider time-ordering and/or detuning.) Early calculations by Apanasevich 
and Kilin48 and Cohen Tannoudji and Reynaud47 confirmed the side-peaks antibunching in autocorrelation and 
their mutual bunching in cross-correlations. In a later work with more involved calculations, Schrama et al.49 
have shown that the central and side peaks feature no mutual correlations. This is due to interferences in the order 
of emission, that could nevertheless be linked to the co-existence of bunched and antibunched emission events. 
This shows that while intuition is strongly supported by the dressed-atom picture, it does not dispense from exact 
calculations for cases that could be ambiguous (and it confirms that there is indeed agreement with expectations 
for cases that cause no ambiguity, such as side-peaks emission).

With the theory of frequency-resolved photon correlations11, it is straightforward to compute such correla-
tions exactly, like Mollow did for the luminescence spectrum, without referring to the dressed-states structure. 
This also allows to consider cases ouside their frequency windows, in fact, the complete landscape of two-photon 
correlations can be obtained12,29. In the case of the Mollow triplet12,50, it shows that the triplet structure reverber-
ates at the two-photon level, through the apparition of a set of 3 hyperplanes, that obey the “leapfrog” equations

Figure 6.  (a) Line shape and (b) level structure of the Mollow triplet. The lineshape is easily understood as the 
result of one-photon transitions between neighbour rungs of the dressed-state ladder, shown in red, green and 
blue. Since there are two degenerate green arrows, the central peak to which they correspond is twice as large. 
This picture is also helpful to visualise two-photon transitions. All the possible combinations are shown in (b). 
Combinations such as 8 and E, that occur only once, behave as expected. Other cases that occur multiple times, 
such as red and green transitions that happen in 0, 1, A and C, require exact computations to identify their 
actual behaviour. Also shown are the “leapfrog transitions”, that jump over the intermediate manifold in a direct 
two-photon emission. The cases where photons have the same frequency is shown in panel (a).



www.nature.com/scientificreports/

1 1Scientific RePorTs |  (2018) 8:6975  | DOI:10.1038/s41598-018-24975-y

ω ω+ = Δ Δ = −Ω Ω .+ +, with , 0, (16)1 2

(The same applies at the N-photon level50). The triplet structure comes, at any photon-number level, from the 
three possibilities to join the two dressed initial and final states. Note that while there are four transitions, N is 
assumed sufficiently large for two transitions to be degenerate. The name of “leapfrog” comes from the fact that, 
at the N-photon level, transitions can occur by jumping over N − 1 intermediate manifolds. This relaxes energy 
conservation for the individual photons and restricts it to the combined emission. In this sense, this is a (N pho-
tons) version of Göpper Mayer’s two-photon processes51 that is however typically difficult to access (a notable 
exception is the planetary nebulae continuum52). The case N = 2 is shown on the right of Fig. 6. In the case of 
resonance fluorescence, such correlations have been noted by Apanasevich and Kilin53 for the ± ±  case (that 
is, overlooking the ± 

 counterparts, which are equally obvious with the dressed atom picture in mind). 
Interestingly, part of this school of researchers, who has produced noteworthy works on the problem of photon 
correlations54–56, has recently expressed some critics on this leapfrog picture, writing that28 “the concept of the 
“leapfrog” processes is not justified”, that they “present an alternative explanation” based on “the unnormalized 
spectral correlation function” which is, they write, “a true measure of spectral correlations” and “which exhibits no 
signatures of the leapfrog transitions”. From their discussion, one thus understands that the production of 
strongly-correlated photons away from the peaks, that we predict, is an artifact due to normalization. In principle, 
one can indeed inflate the vacuum and create what one could regard as an artificial superbunching. This is not 
what happens with leapfrog emission, however, although according to these authors, nothing of interest takes 
place away from the peaks, what they illustrate by producing a two-photon spectrum remarkably featureless, in 
contrast to our two-photon spectrum that is rich from photon correlations flourishing away from the peaks. Their 
non-normalized spectrum is correct but, we believe, is also not interesting as it merely shows that first order pro-
cesses smother second-order ones, as is however well-known and expected. We show, in contrast, that the scarce 
signal from higher-order processes has stronger correlations than those from first-order processes. This will be 
amply and vividly illustrated through Monte Carlo simulations below. One can also consider placing a cavity in 
this “featureless” region when not normalized, and observe how the system then keeps emitting strongly corre-
lated photons but now dominating over the other first-order processes10,57, which would not happen would the 
correlation be an artifact due to normalization. We will show below thanks to the frequency-resolved Monte 
Carlo simulations how one can anyway see the manifestation of leapfrog processes with the naked eye. The rest of 
their discussion is only semantics, in which case we should clarify, as this is apparently needed, that the 
dressed-atom picture is, precisely, a “picture”, that is, an insightful mental representation that is helpful to visualize 
the basic mechanism at play, support the intuition and guide further inquiries. This does not preclude exact cal-
culations based on the opaque equations of quantum mechanics. This is possibly why the Mollow triplet is named 
after Benjamin, not only for his seminal input but also in recognition of the exact expression, although the Cohen 
Tannoudji and Reynaud approximate picture is the one everybody has in mind when thinking about this prob-
lem. We combine both approaches: the sensor technique provides the exact result, while the leapfrog processes 
provide a physical representation à la Cohen Tannoudji et al. Thus, in the same way that resonance fluorescence 
is not spontaneous emission from the dressed atom, the leapfrog emission is not, strictly speaking, spontaneous 
emission jumping over intermediate manifolds. This is, instead, a complicated process that involves the laser and 
the two-level system in a sequence of coherent absorption and emission. We have in fact shown33 how even fluo-
rescence in the low-driving regime does not consist of Rayleigh scattering events but form an intricate interfer-
ence between emission and absorption, that powers the single-photon emission mechanism by suppressing the 
fat tails of the Lorentzian and turning the lineshape into a t2 distribution instead. In the strongly nonlinear regime, 
a similar dynamics takes place but it becomes forbidding and certainly not even useful to apprehend the problem 
in these terms. Note that although inspired by the dressed-atom approach of the problem, ultimately, our compu-
tations are exact (and in full agreement with this physical picture). While the dressed atom has proven to be 
extremely fruitful for their purpose, we find it to be even more so in our N-dimensional case50, if not mandatory. 
It is, indeed, very easy based on this concept to understand why some configurations have less strong correlations 
than others, for instance, one of the +  ⇶ +  transitions with one photon non-degenerate with the two others 
(of interest for photon-heralding of two-photon emission), is particularly weak. This is because it is resonant with 
the − → + −  transition, that breaks this channel of relaxation by interposing a real state in the 
three-photon emission. Configurations +  ⇶ +  whose energies do not intersect with real states, on the other 
hand, have very strong correlations and are more suitable for heralding purposes. It would seem difficult to make 
sense of these observable facts, that follow from exact computations, without the leapfrogging concept. In fact we 
can easily generalise them to arbitrary photon orders and guess which energies are to be avoided in a N dimen-
sional space to harness the best sought configuration of multi-photon emission, without having to undertake any 
actual computation. Is the concept therefore not justified and should one only be allowed infinite series of 
Feynman diagrams? We believe that the comments of Shatokhin et al. targetting the leapfrog picture bring very 
little to the discussion, if not in fact muddying it with confused statements and blurring their actual technical 
contributions that otherwise concur with our results, and of which we wish to remove nothing, as this approach 
has its merits.

Back to the general discussion. We show in Fig. 7 the statistics of clicks from photo-detection events of the 
Mollow triplet in frequency windows spanning from the central peak to the side peaks, including various other 
windows in between, in particular, the leapfrog window. Note that, here as well, the data is a single-detector 
observable, that is to say, the different streams shown are not correlated to each others as they have been obtained 
by the same detector in different runs of the experiment. It would require 5 detectors to obtain the same result but 
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with correct cross-correlations (this is beyond the scope of the present discussion that will go up to two detectors 
only, but is of course a topic of interest for applications). As we did in Fig. 3, we show both ticks in a given time 
window (in black) and with a rescaling of the unit of time so that their densities are equal (in green). Here as well, 
the relative emission rates mean that longer integration times are required when collecting away from the peaks. 
The gain in terms of correlation strengths, however, makes it worthwhile to focus on these regions of reduced 
emission, in a spirit akin to distillation: trading quantity for quality29. The frequency windows have been chosen 
as they correspond to particular cases of interest:

	 i.	 Photons from the central peak.
	 ii.	Case where =Γg (0) 2(2)  (usually attributed to thermal light).
	 iii. Photons from leapfrog emission.

Figure 7.  Frequency-resolved Monte Carlo simulation of the Mollow triplet in independent frequency 
windows. The dotted (solid) lineshape is the triplet as detected by an ideal (finite-bandwidth Γ) detector. 
Sequences of clicks in the frequency windows i–v have been recorded, with 17241, 22836, 99457, 9112 and 
46126 events, respectively. Small samples are displayed, in the same time window (black ticks, up) or with 
renormalization of time to compare equal intensities (green ticks, bottom). Clear structures are visible even 
to the naked eye, in particular, the existence of leapfrog emission is obvious. Only one detector has been used, 
so the streams are not here cross-correlated. The autocorrelations are shown as measured by the Monte Carlo 
data (left column), as computed by the theory of frequency-resolved photon correlation (2nd column, red) and 
both superimposed (right column), to show their rich fine structure and the overall agreement. The effective 
quantum state reconstruction is shown at the bottom, together with fits to fundamental distributions. Panel v 
has its successive emission probabilities brought together to show the exponential extinction of higher photon-
numbers. 1/γσ sets the unit, Ω = 5γσ and Γ = γσ. The clicks correspond to the emission events of the operators 
c4 and c5 in Eq. (18b).
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	 iv.	Case where =Γg (0) 1(2)  (usually attributed to coherent or uncorrelated light).
	 v.	Photons from a side peak.

The central peak is partially thermalized, with a g(2)(τ) that closely resembles the form of thermal fluctuations, 
g(2)(τ) = 1 + exp(−2|τ|/τ0). Upon closer inspection, however, this is an approximation as the exact solution pre-
sents small departures, in particular, a differentiable slope at the origin and small ripples that are thinly visible on 
the theory curve, that we keep separate from the Monte Carlo data for clarity (the quality of their agreement is 
shown in the rightmost column). Note that the dynamics of coherent driving of a two-level system is considerably 
more complicated than its incoherent counterpart and we could not find, so far, a general closed-form expression 
for τΓg ( )(2)  in this case for arbitrary frequencies. Applying the technique of effective-quantum state reconstruction 
from the correlators, described in Section 3.3, we find that the statistics p(n) fits well with a cothermal distribution 
with ≈80% of thermal emission and ≈20% of uncorrelated emission. Overall, the emission of the central peak is 
thus well described by a mixture of thermal and uncorrelated light. It is, as such, not very interesting per se. 
Turning now to the second frequency window, ii, which features =Γg (0) 2(2) , characteristic of thermal emission, 
one can now see more clearly the deviation from the thermal paradigm, with bulging and tails deforming the 
correlation function. These are well reproduced by the Monte Carlo statistics and we let the reader decide if their 
statistical acuity lets them, on the small sample of clicks reported here, observe deviations from the thermal par-
adigm (cf. Fig. 3viii).

The most interesting window, iii, lies halfway between the central and side peak. This is the frequency at 
which, according to our interpretation of the theory12, two photons can make a leapfrog process from the state +  
in a given manifold to the state −  two manifolds below, jumping over the intermediate manifold, cf. the right-
most transition in Fig. 6. These photons are strongly correlated in several ways. From a photo-detection point of 
view, they should arise as more occurrences of closely-spaced two-photon clicks than if the emission was uncor-
related. In particular, their rate of coincidences should increase, leading to Γ g (0) 2(2) , or so-called superbunch-
ing. This is both predicted by the exact theory11,12 and observed in our Monte Carlo simulations, as seen in Fig. 7. 
Remarkably, even with as few as 9112 clicks collected in the numerical experiment, we can reconstruct a 
high-quality signal, revealing the fine details of its structure. Note as well that on the real-time series of clicks, out 
of the nine photons emitted, four came as two-photon bundles (the fifth and sixth clicks are so closely spaced as 
almost overlapping; other ticks are single-photon events). The small sample of clicks also shows strong ordering, 
combining equal spacing and gaps of no emission. While the latter is characteristic of thermal emission, the for-
mer is typically characteristic of antibunching. This combination can be seen as the selection through filtering of 
strongly correlated emission from the emitter, rather than tampering from the filters on the statistics: focusing to 
these frequency windows allows us to detect the two-photon emission events that occurs, from the dressed-atom 
picture, at this frequency. It would be rewarding to apply this technique to the filtered emission of a “bundler”10, 
a device that emits the majority, and in some regime, close to 100%, of its light as N-photon emission, and for 
which filtering has been shown to considerably boost the purity of the quantum emission57,58. Also further 
photon-counting characterization would certainly be enlightening, and preliminary investigations show that the 
percentage of closely-spaced photons is over an order of magnitude higher in iii than in the others at the excep-
tion of ii, as compared to which it is only about 3.8 times larger. We leave further characterizations for future 
works, but provide a last compelling manifestation of leapfrog emission from the effective quantum state recon-
struction approach, cf. Section 3.3. This highlights the frequency window iii as the most dissimilar one as com-
pared to the others, featuring a neat kink at the probability to have two photons, p(2), showing the relative 
predominance of two-photon emission. Overall, this simulation makes it obvious that the emission in this fre-
quency window suffers from no artifact of post-selection or normalization, but does indeed provide strongly 
correlated photon streams.

The fourth frequency window, iv, chosen for its =Γg (0) 1(2)  of uncorrelated emission, is also a case that shows 
strong departures at nonzero τ due to filtering. This is, here again, well captured by the Monte Carlo clicks and is 
visibly noticeable on the small sample, that features ordered clumps of uncorrelated clicks. With the last window, 
v, we come back to a case well studied in the literature, of antibunched emission, albeit far from perfect 
( ≈ .Γg (0) 0 42(2)  and τ ≈ .τ Γmin g ( ) 0 37(2) ). The fact that the minimum antibunching is not at zero is another man-
ifestation of frequency filtering, thinly visible on the figure as small oscillations, but not reproduced at this level of 
signal by the Monte Carlo data. Correspondingly, the p(n) shows increasingly suppressed probabilities to get 
higher number of photons.

Cross-correlations.  In this final part, we consider cross-correlations, for which the Mollow triplet is also a particu-
larly suitable lineshape. That is to say, we consider two detectors acquiring data simultaneously. The master equation for 
two detectors upgrade Eq. (5) to:
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with ξ1, ξ2 the two detectors. The factors α1 = (1 − χ0 − χ1)(1 − χ2) and α2 = χ0(1 − χ3), satisfying simultane-
ously 0 ≤ χ0, χ1, χ2, χ3 ≤ 1 and χ0 + χ1 ≤ 1, take into account the several decay channels of the source: a fraction 
χ1 into free space, a fraction χ0 to the detector ξ1 and the remaining fraction (1 − χ0 − χ1) to the detector ξ2. 
In analogy with the case of a single detector, the system described by the master equation (17) has five collapse 
operators:
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χ γ σ χ ξ χ χ γ σ χ ξ χ γ σ= + − Γ = − − + − Γ =σ σ σc c c(1 ) , (1 ) (1 ) , , (18a)1 0 2 1 1 2 0 1 3 2 2 3 1

χ ξ χ ξ= Γ = Γc cand , (18b)4 2 1 1 5 3 2 2

and its associated non-hermitian Hamiltonian becomes

( )H H H H i i
2

( ) (19)1 1 1 2 2 2 1 1 1 2 2 21 2

† † † † †α γ ξ σ α γ ξ σ γ σ σ ξ ξ ξ ξ= + + − Γ + Γ − + Γ + Γ .
∼

σ ξ ξ σ σ σ

As for the case of autocorrelations, one could similarly demonstrate the equivalence between cross-correlations 
to any orders as computed through the frequency-resolved photon correlations and those obtained through Eq. 
(17) above. Also as was done before for single frequency windows, by applying the Monte Carlo techniques to the 
detectors, one can thus obtain simulated photon emissions, this time in two frequency windows. Computing the 
correlations from this raw data provides a numerical version of the theoretical correlations. This is shown in Fig. 8 
for the joint emission of the two sidebands on the one hand, and then of the two leapfrog windows on the other 
hand, both when driving the two-level system at resonance or with a detuning.

Figure 8.  Frequency-resolved Monte Carlo simulation of the Mollow triplet in dual frequency windows. The 
case on the left (right) is for driving the two-level system at resonance (with detuning Δ = 1.5γσ). The dotted 
(solid) lineshape is the triplet as detected by an ideal (finite-bandwidth Γ) detector. The color code within the 
spectra is for one filter kept fixed at a leapfrog window (top case) or at a sideband (bottom case). Sequences of 
clicks have been recorded in the windows i and ii and iii and iv, the two groups being independent (that is, clicks 
between, e.g, i and iii are not correlated). Small samples are displayed, with renormalization of time to compare 
equal intensities between the two groups (time is the same within each group). Strong correlations of photons 
with different frequencies are clear, in particular, the simultaneity of leapfrog emission and their heralding 
character with detuning are obvious. The cross-correlations are shown as measured by the Monte Carlo data 
(left column) and as computed by the theory of frequency-resolved photon correlation (2nd column, red). 1/γσ 
sets the unit, Ω = 5γσ, Δ = 1.5γσ and Γ = γσ. The clicks correspond to the emission events of the operators c4 
and c5 in Eq. (18b).
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While we considered a small subset only of the possible autocorrelations in Fig. 7 for the Monte Carlo data, we 
could still provide a comprehensive theoretical result at least for Γg (0)(2  through the color-coded spectrum. For 
cross-correlations, however, this would require a 2D plot to reproduce the entire two-photon correlation spec-
trum12. Instead, we consider here the case where one detector is fixed and the other one sweeps the rest of the 
spectrum, providing the cross-correlations. We then place the other detector for Monte Carlo sampling at the 
location of interest. As before, we show raw photon emission, but with no time-rescaling as the respective fre-
quencies chosen have similar intensities. We also compare two-photon correlations computed from this data 
(black and blue lines, at resonance and with detuning respectively) with the theoretical result (red lines). The 
main difference between these cases and the previous ones is that the two streams of photons are now correlated 
as the detectors are measuring simultaneously. If restricting to one stream only, we recover the previous cases, so 
in Fig. 8, panels i-i and ii-ii on the one hand, as well as iii-iii and iv-iv on the other hand, can be found in Fig. 7 (in 
panels iii and v respectively). The two cases have different parameters, since with two detectors, the simulation is 
more computer intensive and we chose a case that provides more emission between the peaks. One can check 
however how the qualitative shapes of the correlations remain the same. At resonance, both streams provide the 
same type of correlations, but with detuning they could be different. This is indeed the case for the leapfrog emis-
sion, and small departures can be observed between v-v and vi-vi, both in the theoretical line and the Monte-Carlo 
generated data: the oscillations are more marked for the low-energy window and a depletion is indeed visible in 
vi-vi that disappeared in v-v. The side peaks, however, feature similar correlations. This shows again the typical 
richer dynamics away from the peaks.

Both at resonance or with detuning, what is of interest when detecting in different windows simultaneously is 
their cross-correlations, as shown in the central column of Fig. 8 with panels i-ii, vi-v, iii-iv and viii-vii. There are 
now clear features in these cross-correlations, whereas the same procedure applied to the streams of the previous 
cases features no correlations, i.e., one obtains flat lines. At resonance, the cross-correlations are symmetrical in 
time. The side peaks correlations feature tiny oscillations which are however too small to be observed with the 
amount of signal we acquired in the numerical experiment, and they are hidden by its fluctuations. With detun-
ing, they can and do become time-asymmetrical, as shown in panels vi-v and viii-vii. In such cases, the order of 
detection matters, and in both cases, the detection on first detector, vi or viii, respectively, makes it more likely to 
later detect (with around 1/γσ delay) a photon on the second detector, v and vii, respectively. The strength of such 
correlations, less than 3, is still fairly modest to call this heralding, but this is the basis for such a mechanism to 
be exploited with proper engineering, such as Purcell-enhancement. Like before, our procedure yields correlated 
streams of photons of different frequencies, that we have just shown through their agreement with the theory of 
frequency-resolved photon correlations, simulate the actual photon emission from the system. One could use this 
raw data to compute numerically, e.g., counting or time-delay distributions, otherwise not easily accessible theo-
retically. Of course, the scheme could in principle be extended to any number of detectors and allow consequently 
higher orders of correlation to be computed in this way. In the limit of an infinite number of detectors, each with 
a given frequency and vanishing spectral width, one would thus simulate the ideal emission of the system. With 
a finite number of detectors with a finite bandwidth, one would simulate its filtered emission. We believe that a 
complexity analysis of the correlations would allow to use the emission of the two-level system as a simpler plat-
form than boson sampling59 to test quantum supremacy by making a laboratory measurement which no classical 
computer would be able to simulate.

Conclusions and Perspectives
In conclusion, we have presented computer experiments that simulate numerically the photon emission from 
a quantum emitter, specifically, a two-level system under both coherent and incoherent driving, at both low 
and large pumping. Our approach is based on the Quantum Monte Carlo technique5–8 applied to the cascaded 
formalism36,37. We have shown how the correlations computed from the raw data of the simulation match with 
the theoretical results provided by the theory of frequency-resolved photon correlations11. In the simplest case, 
we have shown how filtering spoils antibunching and turns a two-level system into a thermal source, albeit in a 
more subtle way than is usually assumed. We have also shown more generally how frequency filtering provides 
a resource to tailor and engineer photon statistics, in particular thanks to its selection of strongly correlated 
processes such as “leapfrog” transitions that consist in the simultaneous emission of a photon bundle between 
two non-contiguous dressed states in the level structure of the system12. This displays rich and potentially useful 
features that are captured in the Monte Carlo simulation and that would be similarly observed experimentally. 
An apparent shortcoming is that the signal is scarce in frequency windows that are the most strongly correlated. 
This is however a direct consequence of dealing with the quantum part of the signal: there is less of it. Frequency 
filtering acts as a process akin to distillation, with the same consequence of providing quality at the expense 
of quantity29. Nevertheless, quantum engineering can come at the rescue and already the oldest trick of cavity 
QED–Purcell enhancement–allows, in some regime, to have all the light of the system emitted as strongly corre-
lated photons10. Using cavities to Purcell-enhance leapfrog processes, one can devise new generations of heralded 
N-photon sources, or, even more generally, bring the system to emit in any desired distribution of photons50. Such 
configurations remain to be studied in detail and, of course, implemented in the laboratory. This should provide 
one route for universal multi-photon sources, with heralded N-photon sources as the most elementary realiza-
tion. Since leapfrog processes are energy-conserving N-photon relaxations, they also appear particularly suitable 
for energy-time entanglement emission, that power a class of quantum-cryptographic protocols with technical 
advantages as compared to those based on entangling in polarization. The latest work from Peiris et al.60, who 
is so far leading the laboratory implementation of this emerging branch of quantum optics, focused on the side 
peaks emission and, as a consequence, failed to break the barrier of a Bell violation. This has been argued no to be 
a proof of nonlocality anyway61 due to its 50% post-selection62. It is easily computed that leapfrog emission would 
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break the Franson limit, but in the light of the Franson configuration’s loophole63, the new challenge is to turn 
to stricter conditions of Bell violations such as Chained Bell’s inequalities. While this has been recently demon-
strated64, the tunable statistics from the Mollow triplet and its windows of strong correlations make it a promising 
platform to further test and advance this line of research. Finally, the combinatoric aspects that quickly make such 
simple problems numerically forbidding also suggest that a two-level system could be used in the laboratory for 
tests of quantum supremacy directly from photon detections, without a complex system of beam splitters inter-
vening to bring in the quantum complexity65,66. All these results leave much for room for further works, and we 
foresee that frequency-resolved photon correlations will become a major theme of photonics. They are relevant 
even when they are ignored and awareness of the underlying physics should allow to considerably optimize, tune 
and expand the range of applications of quantum light sources.
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