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Conventional and Unconventional Photon Statistics
Eduardo Zubizarreta Casalengua, Juan Camilo López Carreño, Fabrice P. Laussy,
and Elena del Valle*

The photon statistics emitted by a large variety of light-matter systems under
weak coherent driving can be understood, to lowest order in the driving, in the
framework of an admixture of (or interference between) a squeezed state and
a coherent state, with the resulting state accounting for all bunching and
antibunching features. One can further identify two mechanisms that produce
resonances for the photon correlations: i) conventional photon blockade
describes cases that involve a particular quantum level or set of levels in the
excitation/emission processes with interferences occurring to all orders in the
photon numbers, while ii) unconventional photon blockade describes cases
where the driving laser is far from resonance with any level and the
interference occurs for a particular number of photons only, yielding stronger
correlations but only for a definite number of photons. Such an understanding
and classification allows for a comprehensive and transparent description of
the photon statistics from a wide range of disparate systems, where optimum
conditions for various types of photon correlations can be found and realized.

1. Blockade in Quantum Optics

Quantum optics was born with the study of photon statistics.[1]

Following Hanbury Brown’s discovery of photon bunching[2,3]

and Kimble et al.’s observation of antibunching,[4] there has
been a burgeoning activity of tracking how pairs of detected
photons are related to each other. From the various mechanisms
that generate correlated photons, one that turns an uncorrelated
stream into antibunched photons has attracted much attention

E. Zubizarreta Casalengua, Dr. J. C. López Carreño, Dr. E. del Valle
Departamento de Física Teórica de la Materia Condensada and
Condensed Matter Physics Center (IFIMAC)
Universidad Autónoma de Madrid
Madrid 28049, Spain
E-mail: elena.delvalle.reboul@gmail.com; elena.delvalle@uam.es
E. Zubizarreta Casalengua, Dr. J. C. López Carreño, Prof. F. P. Laussy,
Dr. E. del Valle
Faculty of Science and Engineering
University of Wolverhampton
Wulfruna St, Wolverhampton WV1 1LY, UK
Prof. F. P. Laussy
Russian Quantum Center
Novaya 100, Skolkovo, Moscow 143025, Russia

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/lpor.201900279

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1002/lpor.201900279

across different platforms for its prac-
ticality of operation (with a laser) and
appealing underlying mechanism.[5–13]

This so-called “blockade” effect describes
how the occupation of an energy level by
a particle forbids another particle to oc-
cupy the same level. As such, it is remi-
niscent of Pauli’s exclusion principle[14,15]

and indeed the first type of block-
ade involved electrons in the so-called
“Coulomb blockade.”[16–18] While Pauli’s
principle relies on the antisymmetry of
fermionic wavefunctions, one can also
implement a blockade from repulsive in-
teractions of the excitations created when
driving the system, as neatly illustrated
with alkali atoms excited to high princi-
pal quantum numbers (Rydberg states),
giving rise to Rydberg blockade from
the strong dipole repulsion.[19,20] In this
framework, the underlying medium can

even be bosonic and broadly described as an anharmonic
oscillator[21–23] with the blockade arising from nonlinearities in
the energy levels. The idea is simple: when the exciting photons
are resonant with the bare frequency of the oscillator, a first pho-
ton can excite the system, but due to the system’s interactions,
a subsequent photon is now detuned from the oscillator’s fre-
quency. If its energy is not sufficient to climb the ladder of states,
it cannot excite the system, that thus remains with one photon
only. In this way, one can turn a coherent—that is, uncorrelated
when measured—stream of photons, with its characteristic Pois-
sonian fluctuations, into amore ordered stream of separated pho-
tons, effectively acting as a “photon turnstile.”[7,8,11] The quality
of such a suppression of the photon clumping can be measured
at the two-photon level with Glauber’s second-order correlation
function g(2)(𝜏), that compares the coincidences in time to those
expected from a random process of same intensity. Correlations
decrease from 1, with no blockade, toward 0 as the nonlinearityU
increases. In the limit whereU becomes infinite, putting the sec-
ond excited state arbitrarily far and realizing a two-level system
(2LS), a second photon is strictly forbidden and g(2) becomes per-
fectly antibunched. For open bosonic systems, the ratio of the in-
teraction to the decay rate is an important variable for the block-
ing to be effective. The “blockade” regime is reached when inter-
actions overtake dissipation.[24] This can be marked as the onset
of antibunching: one photon starts to suppress the next one.
The driven damped anharmonic system is an important

model, not least because it is one of the few cases to enjoy an
exact analytical solution.[25] While much of the mechanism is
contained in this particular case, compound systems—where
the anharmonic system is coupled to a single-mode cavity—have
also attracted considerable attention. This describes for instance
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interacting quantum-well excitons coupled to a microcavity
mode.[26] The effect is then known as “polariton-blockade,”
after the eponymous light–matter particles that constitute
the elementary excitations of such systems. This configura-
tion was first addressed theoretically by Verger et al.[27] for
exciton–polaritons. They studied the response of the cavity
around the lower-polariton resonance, predicting antibunching
indeed, although of too small magnitude with the parameters
of typical systems to be observed easily. This spurred interest
in polariton boxes and other ways of confining polaritons to
enhance their interactions.[28] Much progress has since been
made in boosting polariton interactions, for example, with
dipolar polaritons[29,30] or with collective Rydberg excitation
of a laser-cooled atomic ensemble.[31] Nonetheless, Liew and
Savona had computed a much stronger antibunching in coupled
cavities than is allowed by polariton blockade with the same
order of weak nonlinearity.[32] This so-called “unconventional
polariton blockade” was quickly understood as originating not
from the particular configuration of coupled cavities with weak
Kerr nonlinearities but from a subtler type of blocking, due
to destructive interferences between probability amplitudes
whenever there are two paths that can reach the excited state
with two photons.[33] This result has generated considerable
attention, although it was later remarked[34] that it was a known
effect,[35,36] observed decades earlier[37] where it received a
much smaller followup. Besides, Lemonde et al.[34] further
clarified how unconventional photon blockade is connected to
squeezing rather than single-photon states, which had been
presented as one of the main interest of the effect. Recently, both
conventional[38,39] and unconventional[40,41] blockades have been
reported in solid-state systems, where the 2010 revival of the
idea had triggered intense activity.
In this text, we provide a unifying picture of the two types

of polariton blockades. We show how they typically sit next to
each other in interacting coupled light–matter systems along
with other phenomenologies that produce superbunching in-
stead of the blockade antibunching. In particular, we show that
they are both rooted in the single-component system, either a
2LS or an anharmonic oscillator, with strong photon correlations
produced by interfering the emitter’s incoherent signal with a co-
herent fraction.Wewill nevertheless highlight how the two block-
ades are intrinsically differentmechanismswith different charac-
teristics. Most importantly, the conventional blockade, based on
dressed-state blocking, yields photon antibunching at all orders
in the number of photons, that is, g(N) → 0 for all N ≥ 2, while
the unconventional blockade can only target one N in isolation,
producing bunching for the others. Another apparent similarity
is that both types of blockades produce the same state in what
concerns the population and the two-photon correlation g(2) at the
lowest order in the driving, but differences occur at higher orders,
namely, at the second-order in the driving for g(2) and at the third-
order for the population. Differences exist already at the lowest
order in the driving for g(3) and higher-order photon correlations,
making it clear that the two mechanisms differ substantially
and produce different states, despite strong resemblances in the
quantities of easiest experimental reach. The state produced by
both types of blockade at the two-photon level results from a sim-
ple interference between a squeezed state and a coherent state.
While the squeezing is typically produced by the emitter, the co-
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herent fraction can be either brought from outside, idoneously,
as a fraction of the driving laser itself—a technique known as
“homodyning”—or be produced internally by the driven system
itself, a concept introduced in the literature under the apt quali-
fication of “self-homodyning.”[35] We will thus highlight that, to
this order, essentially the same physics—of tailoring two-photon
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statistics by admixing squeezed and coherent light, discussed in
Section 3—takes place in a variety of platforms, overviewed in
Section 2. We will further synthesize this picture by unifying the
cases where the nonlinearity is: i) strong, namely, provided by a
2LS (Section 4) or on the contrary ii) weak, namely, provided by
an anharmonic oscillator (Section 5), and how these are further
generalized in presence of a cavity where self-homodyning be-
comes a compelling picture since a cavity is an ideal receptacle for
coherent states. This brings the 2LS into the Jaynes–Cummings
model (Section 6) and the anharmonic oscillator into microcavity
polaritons (Section 7), respectively. There are many variations in
between all these configurations, that the literature has touched
upon in many forms, as we briefly overview in the next section.
For our own discussion, while we have tried to retain generality
for the variables that play a significant role, we do not include for
the sake of brevity all the possible combinations, which could of
course be donewould the need arise for a given platform. Instead,
we briefly consider features common to all these cases regard-
ing their response to dephasing (Section 8) and found in their
time-dependence (Section 9), before discussing (Section 10) and
concluding (Section 11).

2. The Blockade Hamiltonian

A fairly general type of photon blockade is described by the fol-
lowing Hamiltonian:

H = ℏ𝜔aa
†a + ℏ𝜔bb

†b + ℏg(a†b + ab†)

+
Ua

2
a†a†aa +

Ub

2
b†b†bb + Ωae

i𝜔ata + Ωbe
i𝜔btb + h.c. (1)

where ℏ𝜔c is the free energy of the modes c = a, b, both bosonic;
ℏg describes their Rabi coupling, giving rise to polaritons as
eigenstates of the 1st line of Equation (1); Uc are the nonlin-
earities of the respective modes, here again for c = a, b; and Ωc
describes resonant excitation at the energy𝜔c. Some details of the
microscopic derivation can be found in ref. [27]. This is brought
to the dissipative regime through the standard techniques of
open quantum systems, namely, with a master equation in
the Lindblad form 𝜕t𝜌 = i[𝜌, H] +

∑
c=a,b(𝛾c∕2)c𝜌, where the

superoperator c𝜌 ≡ 2c𝜌c† − c†c𝜌 − 𝜌c†c describes a decay rate of
mode c at rate 𝛾c (dephasing is dealt with separately in Section 8).
Particular cases or variations of Equation (1) have been studied in
numerous works, even when restricting to those with a focus on
the emitted photon statistics. This ranges from cases retaining
one mode only[42] to the most general form of Equation (1).[43–48]

Regarding the central theme of this work of field-admixture, a
first consideration on the photon statistics of the effect of inter-
fering a quantum signal with a coherent field wasmade by Flayac
and Savona,[45] who found that that the conditions for strong cor-
relations are shifted rather than hampered. This touches upon, in
the framework of input/output theory, the mechanisms of mix-
ing fields that we will highlight in the following, where we will
show that beyond being altered, correlations can be drastically
optimized (becoming exactly zero to first order for antibunching
and infinite for bunching). In a later work,[46] they further
progressed toward fully exploiting homodyning by including

a “dissipative, one-directional coupling” term, which allowed
them to achieve a considerable improvement of the photon
correlations, especially in time, with suppression of oscillations
and the emergence of a plateau at small time delays (discussed in
Section 9). This mechanism has been singled-out and optimized
in a different context[49] (a two-level system admixed to an exter-
nal laser). Credit for quantum-classical field admixtures should
also be given to the bulk of work devoted to these ideas by the
Vuck̆ovíc group, starting with their use of self-homodyning to
study the Mollow triplet in a dynamical setting.[50] Initially used
as a suppression technique to access the quantum emitter’s dy-
namics by cancelling out the scattered coherent component from
their driving laser,[51,52] they later appreciated the widespread
application of their effect and its natural occurrence in other
systems,[53] where it had passed unnoticed, as well as the ben-
efits of a tunability of the interfering component,[54] which they
proposed in the form of a partially transmitting element in an
on-chip integrated architecture that combines a waveguide with
a quantum-dot/photonic-crystal cavity QED platform. Fischer
et al.[50,53] in particular started to develop and implement a series
of pioneering contributions in the effect of homodyning for quan-
tum engineering and optimization, which holds great promise
for the future.[55] In the following, we will provide the unified
theory for such a mixing of coherent and quantum light. The
possibility and benefits of an external laser to optimize photon
correlations also appeared in a work by Van Regemortel et al.,[56]

with a foothold in the same ideas. The effect of tuning two types
of driving was emphasized by Xu and Li,[57] who reported among
other notable results how changing their ratio can bring the sys-
tem from strong antibunching to superbunching, an idea which
we will revisit from the point of view of interfering fields through
(controlled) homodyning or (self-consistent) self-homodyning.
Snijders et al. used the interference to enhance bunching[58]

(and called it “purification”; we will call this “unconventional
bunching”). Similar principles have then been explored and
extended several times in many variations of the problem,[59–75]

which all fit nicely in the wider picture that we will present. In
studying the same effect in different platforms, we will see it
takes on seemingly different forms, with a deceiving tendency to
exhibit specificities of the particular cases, such as following the
characteristic level structures. Also, one manifestation only has
been typically highlighted at a time, disconnected from the oth-
ers or unaware of them. For instance, the microcavity–polariton
configuration with interactions in one mode only (describing
quantum well excitons, the other being a cavity mode) has been
studied mainly from the (conventional) polariton blockade point
of view,[27,76] in which case, the (much stronger) unconventional
antibunching has been largely overlooked. We will focus on the
following on the one-interacting-mode case rather than on the
possibly more popular two weakly interacting sites. First, be-
cause this allows a direct comparison with the Jaynes–Cumming
limit, second, because this configuration became timely fol-
lowing the recent experimental breakthrough with polariton
blockade.[38,39] Other similar cases are also discussed in ref. [77].
Jaynes–Cummings blockade takes over polariton-blockade when
the emitter is effectively a two-level system, that is, in platforms
which exhibit very high nonlinearities, as is the case for instance
with atoms, where photon-blockade and related effects were
pioneered,[9,78] or with molecules,[79] thanks to the progresses
in excitation and collection efficiency[80] of a single-molecule
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and the possibility to embed it in a microcavity, in which case
antibunching and bunching of the type that we are about to
describe have also been observed.[81] The two-level system can
also originate from a more complex environment, such as 0D
excitations of a cloud of Rydberg atoms whose coupling to a
cavity yield strongly-interacting dark polaritons,[82] or so-called
“artificial atoms” in the solid state, such as quantum dots[41,83–85]

or superconducting qubits.[13,40,86] Whatever the platform, a
similar physics of fields admixture repeatedly brings forward
strong bunching and antibunching effects. This is true as
well for other configurations that cannot be accommodated
by Equation (1) in this form, or because they add even more
components. One could mention examples from works that con-
sider pulsed excitation,[87,88] non-Markovian effects,[89] that go
beyond the rotating-wave approximation,[90] involve additional
modes (three in refs. [91–93]), different types of nonlinearity, for
example, a2 in ref. [94], a2b† in refs. [95–97], a2𝜎† in ref. [98], a
four-level system in ref. [99]), two two-level systems in a cavity
in ref. [100] and up to the general Tavis–Cummings model,[101]

pulsed coherent control of a two-level system in ref. [102], two
coupled cavities each containing a two-level system[103,104] up to
a complete array.[105,106] The phenomenology reported in each
of these particular cases however falls within the classification
that we will establish in the remaining of the text, that is, they
can be understood as a homodyning effect of some sort. Finally,
while several works have focused on single-photon emission as
the spotlight for the effect (which is dubious when antibunching
is produced from the unconventional route), others have also
stressed different applications or suggested different contex-
tualization, such as phase-transitions[43] or entanglement,[107]

and there is certainly much to exploit from one perspective or
another.[108]

3. Homodyne and Self-Homodyne Interferences

We will return in the rest of this text to such systems as those
discussed in the previous section—all a particular case or a
variation of Equation (1)—to show that the two-photon statistics
of their emission can be described to lowest order in the driving
by a simple process: the mixing of a squeezed and a coherent
state. In this section, we therefore study this configuration in
details.
The mixing of two quantum fields is most simply achieved by

passing them through the two ports of a balanced beam-splitter.
In the homodyning case that involves a coherent state |𝛼⟩, with
complex amplitude 𝛼 = |𝛼|ei𝜙, mixed with a field of general na-
ture, with annihilation operator d, the normally ordered correla-
tors of the resulting field s = 𝛼 + d is expressed in terms of the
inputs as[109]

⟨s†nsm⟩ = n∑
p=0

m∑
q=0

(
n
p

)(
m
q

)
𝛼∗p𝛼q⟨d†n−pdm−q⟩ (2)

up to some unimportant normalization and phase-shift factors.
In practice, the polarization degree of freedom is involved with
one of the two optical polarizations used as the local oscillator,
with a polarizer to mix them afterwards,[58] but this needs not

enter our simple theoretical picture. From this expression, we can
compute any relevant observable of themixture. For instance, the
total population is

⟨ns⟩ ≡ ⟨s†s⟩ = |𝛼|2 + ⟨nd⟩ + 2ℜ[𝛼∗⟨d⟩] (3)

with nd ≡ d†d. Apart from the sum of both input intensities, there
is a contribution (last term) from the first-order interference be-
tween the coherent components of each of the fields or mean
fields. Similarly, the second-order coherence function, which is
defined as

g(2)s (𝜏) = lim
t→∞

⟨s†(t)(s†s)(t + 𝜏)s(t)⟩
[⟨s†s⟩(t)]2 =

⟨s†(s†s)(𝜏)s⟩⟨ns⟩2 (4)

can be readily obtained from the correlators in Equation (2). We
will restrict to steady-state situations (thus omitting t in all expres-
sions) until Section 9 and will also set the delay 𝜏 = 0, thus focus-
ing on coincidences. This simplifies the notation g(2)s = g(2)s (t →
∞, 𝜏 = 0). We will also consider N-th order coherence functions,
also at zero delay: g(N)s ≡ ⟨s†NsN⟩∕⟨s†s⟩N . These correlators can al-
ways be written as a polynomial series of powers of the amplitude
of the coherent field 𝛼.

g(N)s =
∑2N

k=0 ck|𝛼|k⟨ns⟩N (5)

where ck are coefficients that depend on the phase of the coherent
field 𝜙 and mean values of the type ⟨d†𝜇d𝜈⟩ with 𝜇 + 𝜈 ≤ N2. In
particular, the 2nd-order correlation function, Equation (4), can
be rearranged as

g(2)s = 1 + 0 + 1 + 2 (6)

with m ∼ |𝛼|m,[35,110–112] where 1 represents the coherent con-
tribution of the total signal, and the incoherent contributions
read[109]

0 =
⟨d†2d2⟩ − ⟨d†d⟩2⟨ns⟩2 (7a)

1 = 4
ℜ[𝛼∗(⟨d†d2⟩ − ⟨d†d⟩⟨d⟩)]⟨ns⟩2 (7b)

2 =
⟨X2

d,𝜙⟩ − ⟨Xd,𝜙
⟩2⟨ns⟩2 =

(
ΔXd,𝜙

)2
⟨ns⟩2 (7c)

where Xd,𝜙 = (ei𝜙d† + e−i𝜙d)∕2 is the quadrature with the same
phase 𝜙 of the coherent field. Note that there are no explicit
terms 3 and 4 because through simplifications these get ab-
sorbed in the first term (i.e., 1). This decomposition was first
introduced by Carmichael[35] and in fact precisely to show that
the same quantum-optical phenomenology observed in different
systems had the same origin, namely, to root nonclassical effects
observed in optical bistability with many atoms in a cavity, to the
physics of a single atom coherently driven, that is, resonance flu-
orescence. This is at this occasion of unifying squeezing and an-
tibunching from two seemingly unrelated platforms under the

Laser Photonics Rev. 2020, 1900279 1900279 (4 of 25) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.lpr-journal.org

same umbrella of self-homodyning that he introduced this ter-
minology. While these concepts have thus been invoked and ex-
plored from the earliest days of the field, it is only recently that
they seem to start being fully understood and exploited, see for
instance refs. [46, 49, 50, 53, 56]. Using such interferences to an-
alyze the squeezing properties of a signal of interest (here, the
field with annihilation operator d) through a controlled variation
of a local oscillator (here, the coherent field 𝛼) was first suggested
by Vogel,[111,112] subsequently implemented to show squeezing
in resonance fluorescence,[113] and recently impulsed in a series
of works from the Vuck̆ovíc group, as previously discussed. The
physical interpretation of the contributions to the decomposition
are as follows:

• The numerator of 0 is the normally ordered variance of the
signal intensity, that is, ⟨:(Δnd)2:⟩ = ⟨:n2d:⟩ − ⟨nd⟩2 with nd =
d†d and Δnd = nd − ⟨nd⟩. Therefore, 0 < 0 indicates that the
field d has sub-Poissonian statistics, which in turn contributes
to the sub-Poissonian statistics of the total field s.

• The numerator of 1 represents the normally ordered cor-
relation between the fluctuation-field strength and intensity,⟨d†d2⟩ − ⟨d†d⟩⟨d⟩ = ⟨:ΔdΔnd:⟩, which have been referred to as
anomalous moments[111,112] and been recently measured.[114]

A squeezed-coherent state has such correlations.
• The numerator of 2 is the variance of the quadratures of
the field d. Having 2 < 0 necessarily implies that the state
of light has a squeezing component. This can be proved by
noting that :X2

d : = X2
d − 1∕4 (the same for :Y2

d :). If 2 < 0, the
standard deviation of Xd,𝜙 must be less than 1∕2, but since
Xd,𝜙 and its orthogonal quadrature, Xd,𝜙+𝜋∕2, must fulfil the
Heisenberg uncertainty relation, ΔXd,𝜙ΔXd,𝜙+𝜋∕2 ≥ 1∕4, then
ΔXd,𝜙+𝜋∕2 > 1∕2. This necessarily implies that there is a certain
degree of squeezing in d. Nevertheless, the opposite statement
is not true. A state with a non-zero degree of squeezing can
have 2 ≥ 0, for instance, if the relative direction between the
coherent and squeezing contributions fulfils 𝜃 − 2𝜙 = 𝜋∕2,
where 𝜃 is the phase of the squeezing parameter (a straight-
forward example is provided by the displaced squeezed state).
Furthermore, if ⟨d⟩ = 0, the numerator of 2 simplifies to
4|𝛼|2(⟨:X2

d :⟩ − |𝛼|2).
An analogous procedure likewise decomposes the higher-order
coherence functions, that is, g(n)s = 1 +

∑2n−2
m=0 

(n)
m , with closed-

form expressions for  (3)
m given in ref. [109].

As an illustration which is at the heart of what follows,
let us consider the interference of the coherent state with
a squeezed state, as shown schematically in Figure 1a. The
coherent state |𝛼⟩ = a(𝛼) |0⟩ and the squeezed state |𝜉⟩ =
d(𝜉) |0⟩ are generated from a displacement a(𝛼) = exp(𝛼a† −
𝛼∗a) and squeezing d(𝜉) = exp( 1

2
[𝜉d† 2 − 𝜉∗d2]) operator, respec-

tively, where 𝜉 = rei𝜃 is the squeezing parameter. Thus, the state
that feeds the beam splitter is |𝜓in⟩ = |𝛼 , 𝜉⟩ = a(𝛼)d(𝜉) |0⟩da
where the state subscript indicates the input/output subspaces
where operators are acting. The interference at the beam split-
ter mixes these two states. Writing the operators in the output
basis gives[109] a(𝛼) = o(𝛼o)s(𝛼s) = s(𝛼s)o(𝛼o) where 𝛼o =
iR𝛼, 𝛼s = T𝛼 andj(𝛼j) = exp(𝛼jj − 𝛼∗j†) for j = o, s. Similarly, the

Figure 1. Second-order coherence function g(2)s for the interference be-
tween a coherent and a quadrature-squeezed field, as in the setup shown
in panel (a). The resulting g(2)s is shown in panel (b) as a function of the co-
herent field |𝛼| and squeezing parameter r (colour map in log scale). The
relative phase 𝜙 between the squeezed and coherence state is the one that
optimizes antibunching, that is, 𝜙 = 𝜃∕2. c) The n-norm (up to g(6), i.e.,
n = 5) as defined in Equation (18). Dashed black lines in both panels mark
the minimum of g(2)s , showing that the best antibunching is no guarantee
of good two-photon emission. d) Cut of g(2)s along the horizontal dashed
line in panel (b) (|𝛼| = 0.3) and its decomposition given by Equations (6)
and (7). The black dotted line shows g(2)

d
for the squeezed state only.

squeezing operator in the output basis reads:

d(𝜉) = exp
[1
2

(
𝜉∗o o

2 − 𝜉oo†
)
+ 1
2

(
𝜉∗s s

2 − 𝜉ss†
)
+
(
𝜉∗osos − 𝜉oso

†s†
)]

= exp(o + s + os) (8)

where 𝜉o = T2𝜉, 𝜉s = −R2𝜉 and 𝜉os = iRT 𝜉. This exponential can
be simply split into two different contributions only if [So +
Ss, Sos] = 0, which is fulfilled in the particular case of a sym-
metric beam splitter (T = R); however, the first correction term
grows proportionally to r2TR(T2 − R2), so, for either low squeez-
ing signal (r ≪ 1) or almost symmetrical beam splitter (T ≈ R),
this is a good approximation. Besides, the commutator [So, Ss]
vanishes for any possible values, so the exponential simplifies
to d(𝜉) = o(𝜉o)s(𝜉s)os(𝜉os) and finally, the output state can be
written as

|𝜓out⟩ = o

(
𝛼o
)
o

(
𝜉o
)
s

(
𝛼s
)
s

(
𝜉s
) |𝜉os⟩os (9)

where |𝜉os⟩ = d(𝜉) |0⟩os = ∑∞
n (tanh ros)

n |n, n⟩os ∕cosh ros is a two-
mode squeezed state[115] with ros = |𝜉os| = RT r. The signal of in-
terest is obtained from the pure state 𝜌out = |𝜓out⟩ ⟨𝜓out| by trac-
ing out output o, 𝜌s = Tro{𝜌out}. Using the cyclic properties of the
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trace and the identities †
o(𝛼o)o(𝛼o) = †

o (𝜉o)o(𝜉o) = 𝟙̂o, where
𝟙̂o is the identity operator, and since any operator that only acts
on the s-subspace can be taken out of the trace, we find 𝜌s =
s(𝛼s)s(𝜉s)(Tro{|𝜉os⟩ ⟨𝜉os|})†

s (𝜉s)
†
s (𝛼s) with the partial trace eval-

uating to

𝜌th ≡ Tro{|𝜉os⟩ ⟨𝜉os|} = 1

cosh2 ros

∞∑
n=0

(
tanh ros

)2n |n⟩s ⟨n|s (10)

This has the form of a thermal state, with mean population pth ≡⟨s†s⟩ = sinh2 ros. The output field detected at a single arm of the
system therefore corresponds to a displaced squeezed thermal
state. Finally,

𝜌s = s

(
𝛼s
)
s

(
𝜉s
)
𝜌th

†
s

(
𝜉s
)
†

s

(
𝛼s
)

(11)

with parameters 𝛼s = T|𝛼|ei𝜙, 𝜉s = rse
i𝜃s = R2ei(𝜃+𝜋) and pth =

sinh2(RT r). Even though T and R appear as general, the con-
figuration of an interference assumes R ≈ T. From now on, we
consider the case of a 50:50 beam splitter (T2 = R2 = 1∕2). The
thermal population in terms of the squeezed population of the
input signal ⟨nd⟩ = sinh2 r becomes

pth =
1
2
(
√
1 + ⟨nd⟩ − 1) (12)

From 𝜌s, one can compute the observables for the mixed signal,
for example, g(2)s = Tr[𝜌ss

† 2s2]∕Tr[𝜌ss†s]2 (g(3) is given in ref. [109]):

⟨ns⟩ = |𝛼|2
2

+
⟨nd⟩
2

, |⟨s2⟩| = (
pth +

1
2

)
sinh(r) (13a)

g(2)s = 1 + ⟨ns⟩−2 sinh2 r[cosh 2r + 2|𝛼|2(1 − cos(𝜃 − 2𝜙) coth r
)]

(13b)

The second-order correlation for the total (13b) can be decom-
posed as in Equation (6) into

0 =
sinh[4](r)⟨ns⟩2 [1 + coth(r)2] , 1 = 0 (14a)

2 =
2|𝛼|2 sinh2(r)⟨ns⟩2 [

1 − cos(𝜃 − 2𝜙) coth(r)
]

(14b)

where ⟨ns⟩ = |𝛼|2 + sinh2(r). Here, ⟨d⟩ = 0 but also 1 is exactly
zero because, for a squeezed state, the correlators ⟨d†𝜇d𝜈⟩ vanish
when 𝜇 + 𝜈 is an odd number. Useful expression for the decom-
position of g(2)s and g(3)s in terms of the incoherent component and
the two-photon coherence are given in ref. [109], where it is also
shown how these states can be seen as steady-state solutions of a
driven dissipative cavity, thus linking the dynamical parameters
(such as the coherent driving and the squeezing intensity) to the
abstract quantities 𝛼 and r.
Inspection of Equation (14) shows that the only way in which

g(2)s < 1, that is, the statistics of the total signal can be sub-
Poissonian, regardless of the value of the squeezing parameter, is

for 2 to be negative, which implies that the phases of the coher-
ent state and the squeezing must be related by |𝜃 − 2𝜙| < 𝜋∕2.
We take for simplicity the minimizing alignment, 𝜃 = 2𝜙, which
means that the coherent and squeezed excitations are driven with
the same phase, since the phase of the squeezed state is 𝜃∕2. Us-
ing such a relation, the interference yields the correlation map
shown in Figure 1b as a function of the amplitude of the coher-
ent |𝛼| and squeezing r intensities. The black dashed line shows
the optimum amplitude of the coherent state that minimizes g(2)s

for a given squeezing, which is given by

|𝛼|min = er
√
cosh(r) sinh(r) (15)

Replacing this condition in Equations (14), we obtain the mini-
mum possible value of g(2)s

g(2)s,min = 1 − e−2r

1 + sinh(2r)
≤ 1 (16)

This goes to zero although at the same time as the population
goes to zero. Figure 1d shows a transverse cut of the correlation
map in (b) along the purple long-dashed line, which corresponds
to |𝛼| = 0.3. The decomposition and total g(2)s are shown as a func-
tion of the squeezing parameter, with minimum g(2)s = 0.26 at
r ≈ 0.078. Without the interference with the coherent state, the
squeezed state can never have sub-Poissonian statistics. In fact,
in such a case, the correlations become independent of the phase
of the squeezing parameter

g(2)d = g(2)s |𝛼→0 = 2 + coth2(r) ≥ 3 (17)

which is minimum when squeezing is infinite r → ∞, and di-
verges at vanishing squeezing r → 0, in which case the state is|𝜉⟩ = (1 − r2

4
) |0⟩ − ei𝜃 r√

2
|2⟩ up to 2nd order, with vanishing signal⟨nd⟩ = sinh2(r).

There is a great tunability from such a simple admixture since
g(2)s of the light at the output of the beam splitter can be varied
between 0 and∞ simply by adjusting the magnitudes of the co-
herent field and the squeezing parameter. In particular, the most
sub-Poissonian statistics occurs when coherent light interferes
with a small amount of squeezing r < |𝛼min|, in the right intensity
proportion, given by Equation (15). Counter-intuitively, g(2)s ≪ 1
occurs when the squeezed light itself is, on the opposite, super-
Poissonian (even super-chaotic g(2)d > 2). For instance, in order to

have g(2)s,min < 1∕2, it is required that r < log (
√
6 − 1)∕2 ≈ 0.186,

which implies g(2)d > 31.7 and |𝛼min| >√
(2 −

√
6)∕2 ≈ 0.52 > r.

This is a fundamental result that we will find throughout the text
in order to find the conditions for andmanipulate sub-Poissonian
statistics and antibunching in various systems under weak coher-
ent driving.
An important fact for our classification of photon statistics

is that, since the sub-Poissonian behavior is here due to an
interference effect, the set of parameters that suppresses the
fluctuation at the two-photon level does not suppress them at all
N-photon levels, which means that the multi-photon emission
cannot be precluded simultaneously at all orders. In other words,
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the condition in Equation (15) that minimizes g(2)s , also min-
imizes the two-photon probability in the interference density
matrix ⟨2| 𝜌s |2⟩, at low intensities, but this is not the same
condition that minimizes any other photon probability ⟨n| 𝜌s |n⟩.
This incompatibility is revealed by the n-norm, as defined in
ref. [116], which is the distance in the correlation space between
signal s and a perfect single-photon source.

‖‖‖(g(k)s )‖‖‖n = n

√√√√n+1∑
k=2

[g(k)s ]n (18)

Figure 1c shows the 5-norm for the same range of parameters of
Figure 1b. The dashed black line indicates the minimum values
of g(2)s , which lies in a high-fluctuation region when the higher or-
der correlation functions are taken into account. Further increas-
ing n renders the correlation map completely red which means
that multiphoton emission is not suppressed even if g(2)s is close
to zero. This is a feature typical of antibunching that arises from
a two-photon interference only, that suggests that their use as
single-photon sources may be an issue in the context of quantum
technology where higher-photon correlations may jeopardize ap-
plications that rely on two-photon suppression. This is related
to the fact that this antibunching stems from a Gaussian state,
which is the most classical of the quantum states.
The decomposition of the second-order correlation as in Equa-

tion (6) is not limited to the particular case of interfering pure
states set as initial conditions. This can also be applied to the
dynamical case of a single system which provides itself and di-
rectly a coherent component 𝛼 along with another, and there-
fore quantum, type of component. Calling s the annihilation op-
erator for a particular emitter which has such a coherent—but
not exclusively—component in its radiation, one can thus ex-
press its emission as the interference (or superposition) of a
mean coherent field ⟨s⟩ and its quantum fluctuations, with op-
erator d = s − ⟨s⟩. That is, one can always write
s = ⟨s⟩ + d (19)

Following the terminology introduced in the literature for a simi-
lar purpose,[35] such an emission can be called self-homodyning.
Since g(2)s is also given by Equation (7) with the simplification
brought by the fact that ⟨d⟩ = 0, and by replacing 𝛼 → ⟨s⟩ and d →
s − ⟨s⟩, general expressions in terms of ⟨s†nsm⟩ for the emission of
a single-emitter s, interfering its own components, is given by

0 =

[ ⟨s†2s2⟩ − ⟨s†s⟩2 − 4|⟨s⟩|4 + 6|⟨s⟩|2⟨s†s⟩
+2ℜ[⟨s†⟩2⟨s2⟩ − 2⟨s†⟩⟨s†s2⟩]

]
⟨s†s⟩2

1 = 4
ℜ[⟨s†⟩⟨s†s2⟩ − ⟨s†⟩2⟨s2⟩] + 2|⟨s⟩|2(|⟨s⟩|2 − ⟨s†s⟩)⟨s†s⟩2 and

2 = 2
ℜ[⟨s†⟩2⟨s2⟩] + |⟨s⟩|2⟨s†s⟩ − 2|⟨s⟩|4⟨s†s⟩2 (20)

In the following sections, we will show how self-homodyning,
Equations (20), explains by itself a huge amount of results scat-
tered in the literature, that can be understood as interferences

between coherent and quantum components (that may or may
not be of the squeezing type). This allows to better understand
and analyze their statistical properties (anti- and superbunching)
and contrast them with conventional blockade. We will focus on
cases that are both fundamental and tightly related to each other,
namely, the 2LS (resonance fluorescence in the Heitler regime)
in Section 4, the anharmonic oscillator in Section 5, the Jaynes–
Cummings Hamiltonian in Section 6 and microcavity polaritons
in Section 7. Many systems in their low-driving regime are vari-
ations of these when not exact fits.

4. Heitler Regime of Resonance Fluorescence

We first consider the excitation of a two-level system (2LS) driven
by a coherent source in the regime of low excitation—commonly
referred to as the Heitler regime. Such a system is modeled by
the Hamiltonian (ℏ = 1)

Hrf = (𝜔𝜎 − 𝜔L)𝜎
†𝜎 + Ω𝜎

(
𝜎† + 𝜎

)
(21)

This is the particular case of the general Hamiltonian (1) when
only onemode is considered andU → ∞. Here, the 2LS has a fre-
quency 𝜔𝜎 and is described with an annihilation operator 𝜎 that
follows the pseudospin algebra, whereas the laser is treated clas-
sically, that is, as a complex number, with intensityΩ𝜎 (taken real
without loss of generality) and frequency 𝜔L. The dynamics only
depends on the frequency difference, Δ𝜎 ≡ 𝜔𝜎 − 𝜔L. The dissi-
pative character of the system is included in the dynamics with a
master equation 𝜕t𝜌 = i[𝜌, Hrf ] + (𝛾𝜎∕2)𝜎𝜌 in the Lindblad form.
The steady-state solution, computed by standard open quantum
systems techniques,[26] can be fully written in terms of two pa-
rameters: the 2LS population (or probability to be in the excited
state) ⟨n𝜎⟩ ≡ ⟨𝜎†𝜎⟩, and the coherence or mean field 𝛼 ≡ ⟨𝜎⟩[117]
𝜌 =

(
1 − ⟨n𝜎⟩ 𝛼∗

𝛼 ⟨n𝜎⟩
)

(22)

where

⟨n𝜎⟩ = 4Ω2
𝜎

𝛾2
𝜎
+ 4Δ2

𝜎
+ 8Ω2

𝜎

and 𝛼 =
2Ω𝜎(2Δ𝜎 + i𝛾𝜎)
𝛾2
𝜎
+ 4Δ2

𝜎
+ 8Ω2

𝜎

(23)

As a consequence of the fermionic character of the 2LS, it can
only sustain one excitation at a time. Therefore, all the corre-
lators different from those in Equation (23) vanish, and in par-
ticular the N-photon correlations of the two-level system are
exactly zero, namely g(N)𝜎 = 0 for N ≥ 2. We call this perfect can-
cellation of correlations to all orders conventional blockade or
conventional antibunching (CA), as it arises from the natural
Pauli blocking scenario. To investigate the components of the cor-
relations that ultimately provide the perfect sub-Poissonian be-
havior of the 2LS, we separate the mean field from the fluctua-
tions of the signal, 𝜎 = 𝛼 + 𝜖 in analogy with Equation (19). Fol-
lowing Equations (20), g(2)𝜎 can be decomposed as in Equation (6)
with

0 =
|𝛼|2(6⟨n𝜎⟩ − 4|𝛼|2)

n2
𝜎

− 1 (24a)
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Figure 2. Second-order coherence function g(2)𝜎 (dashed black) of reso-
nance fluorescence, as a function of the driving-laser intensity Ω𝜎 (at
resonance). The Heitler regime, investigated in this work, is on the left
(Ω𝜎 ≪ 𝛾𝜎). a) Decomposition of g(2)𝜎 , given by Equation (20) with s → 𝜎,
which cancels out to give an exact zero. b) Squeezing properties of the
emitted light (Δ𝜎 = 0), characterised by the effective squeezing parame-
ter reff for the fluctuations only 𝜖 (red line), and statistics of the fluctua-
tions g(2)𝜖 (solid blue line), given by Equation (27). The latter can be ap-
proximated by g(2)

eff
when the driving is low enough. The red solid line indi-

cates when the effective squeezing parameter fits properly the actual statis-
tics and becomes dashed when the approximation fails. In both cases, the
range of validity is Ω𝜎 ≲ 0.1𝛾𝜎 .

1 = −8
|𝛼|2(⟨n𝜎⟩ − |𝛼|2)

n2
𝜎

(24b)

2 = 2
|𝛼|2(⟨n𝜎⟩ − 2|𝛼|2)

n2
𝜎

(24c)

These are presented in Figure 2a as a function of the inten-
sity of the driving laser. The decomposition shows that, al-
though the photon correlations of the 2LS are always perfectly
sub-Poissonian, or antibunched, the nature of their cancellation
varies depending on the driving regime.[49] In the high-driving
regime, the coherent component is compensated by the sub-
Poissonian statistics of the quantum fluctuations (0 < 0) since
limΩ𝜎→∞ 𝛼 = 0 and fluctuations become the total field, 𝜖 → 𝜎.
In contrast, in the Heitler regime the coherent component is
compensated by the super-Poissonian but also squeezed fluctu-
ations (2 < 0). The Heitler regime is, therefore, an example of
the type of self-homodyne interference discussed in Section 3.
The fluctuations can be analyzed more closely through their

correlation functions.

⟨𝜖†k𝜖l⟩ = (−1)k+l𝛼∗ k−1𝛼l−1
(|𝛼|2(1 − k − l + kl) + kl ⟨n𝜖⟩) (25)

where ⟨n𝜖⟩ = ⟨n𝜎⟩ − |𝛼|2 is the contribution from the fluctu-
ations to the total population of the 2LS. The N-photon cor-
relations from the fluctuations alone can be given in closed
form [109]

g(N)
𝜖

=
|𝛼|2(N−1)(N2 ⟨n𝜎⟩ + (1 − 2N)|𝛼|2)

(⟨n𝜎⟩ − |𝛼|2)N (26)

which, in terms of the physical parameters reads

g(N)
𝜖

=
(N − 1)2

(
𝛾2
𝜎
+ 4Δ2

𝜎

)
+ 8N2Ω2

𝜎

8N Ω2N
𝜎

(
𝛾2
𝜎
+ 4Δ2

𝜎

)1−N (27)

The two-photon fluctuation correlations g(2)𝜖 are shown in Fig-
ure 2b, confirming that fluctuations are sub-Poissonian or super-
Poissonian depending on whether the effective driving defined
as Ωeff ≡ Ω𝜎∕

√
1 + (2Δ𝜎∕𝛾𝜎)2 is much larger or smaller than the

system decay 𝛾𝜎 , respectively (the figure is for the resonant case).
In the Heitler regime, we need to consider only the mag-

nitudes up to leading order in the effective normalized driv-
ing p ≡ 2Ωeff∕𝛾𝜎 . The main contribution to the intensity ⟨n𝜎⟩ =|𝛼|2 + ⟨n𝜖⟩, in the absence of pure dephasing, comes from the
coherent part |𝛼|2 of the signal. Fluctuations only appear to the
next order, having, up to fourth order in p

⟨n𝜎⟩ = p2 − 2p4 , |𝛼|2 = p2 − 4p4 and ⟨n𝜖⟩ = 2p4 (28)

The coherent contribution corresponds to the elastic (also
known as “Rayleigh”) scattering of the laser-photons by the
two-level system, while the fluctuations originate from the two-
photon excitation and re-emission.[118] In the spectrum of emis-
sion, this manifests as a superposition of a delta and a Lorentzian
peaks with exactly these weights, |𝛼|2 and ⟨n𝜖⟩, both centered
at the laser frequency, with no width (for an ideal laser) and 𝛾𝜎 -
width, respectively.[49,119,120] Fluctuations have no coherent inten-
sity by construction, ⟨𝜖⟩ = 0. At the same time, their second mo-
mentum is not zero but exactly the opposite of the coherent field
one: ⟨𝜖2⟩ = −𝛼2, thanks to the fact that ⟨𝜎2⟩ = 𝛼2 + ⟨𝜖2⟩ = 0. This
means that both contributions, coherent and incoherent, are of
the same order in the driving pwhen it comes to two-photon pro-
cesses and can, therefore, interfere and even cancel each other.
This is precisely what happens and is made explicit in the g(2)𝜎 -
decomposition above. The strong two-photon interference (2)
can compensate the Poissonian and super-Poissonian statistics
of the coherent and incoherent parts of the signal (1 + 0). Since
quadrature squeezing is created by a displacement operator, or a
Hamiltonian, based on the operator 𝜖2, this situation corresponds
to a high degree of quadrature squeezing for the fluctuations. In
fact, it can be shown[109] that the incoherent population in the
Heitler regime behaves to lowest order exactly like a squeezed
thermal state with squeezing parameter reff = 4Ω2

𝜎
∕(𝛾2

𝜎
+ 4Δ2

𝜎
)

and effective thermal population pth ≈ 16Ω4
𝜎
∕(𝛾2

𝜎
+ 4Δ2

𝜎
)2. From

this, an effective g(2), namely g(2)eff , can be obtained for the fluctua-
tions that also behave like a squeezed thermal state, for which cor-
relations have been given above. Fixing |𝛼| = 0 in Equation (13b)
and taking the limit r2eff → 0 and pth → 0 (both go to 0 with the
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same power dependence), gives g(2)eff ≈ r2eff∕(r
2
eff + pth)

2 yielding,
with substitution of the thermal parameters

g(2)eff ≈
(
𝛾2
𝜎
+ 4Δ2

𝜎

)2
64Ω4

𝜎

(29)

This is plotted in Figure 2b as a function of the driving, with the
line becoming dashed when the interference can no longer be
described in terms of a squeezed thermal state. Note that the to-
tal signal has no squeezing at low driving, only fluctuations do,
because the coherent contribution is much larger.
Resonance fluorescence by itself always provides antibunch-

ing due to the perfect cancellation of the various components.
However, one can disrupt this bymanipulating the coherent frac-
tion, simply by interfering the signal 𝜎 in a beam splitter with
an external coherent state |𝛽⟩. This allows to change the photon
statistics of the total signal s = T𝜎 + iR𝛽, where T2 and R2 are
the transmittance and reflectance of the beam splitter. Actually,
since the decomposition affects correlators to all orders, Equa-
tion (26), one can target the N-photon level instead of the two-
photon one. Namely, one can decide to set the N-photon coher-
ence function to zero. As a particular case, the 1-photon case can-
cels the signal altogether, which is obtained by solving the condi-
tion ⟨ns⟩ = T2|𝛼 + iR𝛽1∕T|2 = 0 (because ⟨n𝜖⟩ = 0 to second or-
der in Ω𝜎). We will show that the possibility to target one N in
isolation of the others introduces a separate regime from conven-
tional blockade. Given their relationship and in line with the ter-
minology found in a large body of literature, we refer to this as un-
conventional blockade and unconventional antibunching (UA).
With this objective of tuning N-photon statistics and in order

to avoid referencing the specificities of the beam splitter which
do not change the normalized observables, let us define 𝛽′ ≡
R𝛽∕T ≡ |𝛽′|ei𝜙 and parameterize its amplitude as a fraction (al-
ways a positive number) of the laser field exciting the 2LS such
that |𝛽′| = Ω𝜎∕𝛾𝜎 . This gives the coherence function g

(N)
s of the

interfered field in the Heitler regime as

g(N)s = T2N⟨ns⟩N  2(N−1)Ω2N
𝜎

𝛾2N
𝜎

(
𝛾2
𝜎
+ 4Δ2

𝜎

) [
 2
(
𝛾2
𝜎
+ 4Δ2

𝜎

)
+

+ 4N𝛾𝜎
(
𝛾𝜎 cos𝜙 − 2Δ𝜎 sin𝜙

)
+ 4N2𝛾2

𝜎

]
(30)

One can appreciate the considerable enrichment brought by the
interfering laser, by comparing ⟨ns⟩ with the interfering laser,
 ≠ 0, given by Equation (30) for N = 1 (since g(1)s = 1, this ex-
pression also provides the population) to the population ⟨n𝜎⟩
without the laser, = 0, given by Equation (23), and evenmore so
by comparing the N-photon correlation function, which is iden-
tically zero without the interfering laser, and that becomes Equa-
tion (30) with the interfering laser. Interestingly, there is now an-
other condition that suppresses completely photon coincidences
to yield a perfect antibunching at a given N-photon order, in ad-
dition to the one obtained in the original system without the in-
terfering laser (CA). The new conditions exist for any detuning
and are given by

tan𝜙N = −
2Δ𝜎

𝛾𝜎
and N = −2N cos𝜙N (31)

Focusing on the resonance case for simplicity, we have N = 2N
and always the same phase, 𝜙N = 𝜋, which corresponds to the
field i𝛽′N = −N|𝛼|. The total coherent fraction changes phase
for all N: 𝛼 + i𝛽′N = −(N − 1)𝛼. The signal population (⟨ns⟩ =
G(1)

s ) vanishes due to a first-order (or one-photon) interference at
the external laser parameter 1 = 2, which translates into i𝛽′1 =
−i|𝛼|. The external laser completely compensates the coherent
fraction of resonance fluorescence, in this case 𝛼 = i|𝛼| (with|𝛼| = 2Ω𝜎∕𝛾𝜎). This situation corresponds to a classical destruc-
tive interference, which equally occurs between two fully classical
laser beams with the same intensity and opposite phase.
In the case of highest interest, that of two-photon correla-

tions g(2)s , we find a destructive two-photon interference at the
intensity 2 = 4, which corresponds to an external laser i𝛽2 =
−2|𝛼|, that fully inverts the sign of the coherent fraction in the
total signal: 𝛼 + i𝛽′2 = −𝛼. This coherent contribution leads to
perfect cancelation of the two-photon probability in the so-called
wavefunction approach.[121] Note that this does not, however,
satisfy all other N-photon interference conditions and g(N)s with
N > 2 do not vanish. This is a very different situation as com-
pared to the original resonance fluorescence where g(N)𝜎 = 0 for
all N > 1. One, the conventional scenario, arises from a an inter-
ference that takes place at all orders. The other, the unconven-
tional scenario, results from an interference that is specific to a
given number of photons.
All these interferences, can be seen in Figure 3a up to N = 4.

When there is no interference with the external laser,  = 0, an-
tibunching is perfect to all orders recovering resonance fluores-
cence. At the one-photon interference, the denominator of g(N)s

becomes zero and the functions, therefore, diverge. This pro-
duces a superbunching effect of a classical origin, as previously
discussed: a destructive interference effect that brings the total in-
tensity to zero. In this case, the external laser removes completely
by destructive interference the coherent fraction of the total sig-
nal. Therefore, the statistics is that of the fluctuations alone, what
we previously called g(N)𝜖 , given by Equation (26). Note that the
effect is also intrinsically difficult to measure as it is associated
to a collapse of the signal. We have already discussed how, in the
Heitler regime, fluctuations become super chaotic and squeezed.
We can see, on the left hand side of Figure 1, that in the limit of
Ω𝜎 → 0, they actually diverge. Such a superbunching is linked to
noise. The resulting state is missing the one-photon component
and, consequently, the next (dominating) component is the two-
photon one. Nevertheless, there is not a suppression mechanism
for components with higher number of photons so that the rele-
vance of such a configuration formultiphoton (bundle) emission,
remains to be investigated. We call this feature unconventional
bunching (UB) in contrast with bunching that results from a N-
photon de-excitation process that excludes explicitly the emission
of other photon-numbers. This superbunching, as well as the an-
tibunching by destructive interferences, will be reappearing in
all the next systems of study. The Heitler regime is, therefore, a
simple but rich system where all the squeezing-originated inter-
ferences already occur although we need an external laser to have
them manifest.
We now return to the subtle point of which quantum state

is realized by the various scenarios. To lowest-order in the
driving, the dynamical state of the system can be described by a
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Figure 3. Interference between the output of resonance fluorescence and
an external laser of intensity proportional to  and phase 𝜙. All modes
at resonance. a) Intensity ⟨ns⟩ and N-th order coherence functions g(N)s of
the resulting light as a function of  . b) g(2)s as a function of both  and 𝜙
(in units of 𝜋) with the colour code in inset (log-scale). Tuning the external
laser allows to choose between various resonant conditions.

superposition of a coherent and a squeezed state, insofar as
only the lower-order correlation functions (namely, population
and g(2)) are considered. This is shown in Table 1, where we
compare g(N) for 1 ≤ N ≤ 3 (with N = 1 corresponding to the
population) for the fluctuations in the Heitler regime versus
the corresponding observables for a squeezed thermal state,
on the one hand, and the laser-corrected configuration versus
the displaced squeezed thermal state on the other hand. Such a

comparison is made by identifying the squeezing parameter and
thermal populations to various orders in a series expansion of
the quantum states with the corresponding observables from the
dynamical systems, starting with reff and pth introduced above.
By definition, fluctuations have a vanishingmean, that is, ⟨𝜖⟩ = 0
so we must choose 𝛼 = 0. On the other hand, for the corrected
emission, since one is blocking the two-photon contribution (at
first order, this gives g(2) = 0), the comparison with a displaced
thermal state is obtained by imposing the condition for g(2) to
vanish at first order (r = |𝛼|2 and 𝜃 = 2𝜙). The results are com-
piled in the table up to the order at which they differ. Through the
typical observables, namely, the population and g(2), one can see
how the system is indeed well described to lowest order in the
driving by a coherent squeezed thermal state (displaced if there
is a laser-correction). However to next order, there is a departure,
showing that the Gaussian state representation is an approxi-
mation valid up to second-order only. In fact, for three-photon
correlations, the disagreement occurs already at the lowest-order
in the driving, and is of a qualitative character, as is also shown in
the table. Therefore, such a description is handy but breaks down
if a high-enough number of photons or a too high-pumping is
considered. What are the consequences of this for quantum ap-
plications of such states has not yet been settled in the literature.

5. Anharmonic Blockade

To show that the effects of conventional (self-homodyne interfer-
ence at all N) and unconventional (self-homodyne interference
at a given N only) blockades take place in a general setting and
are not specific of strong quantum nonlinearities (such as a 2LS),
we now address the case of a single anharmonic oscillator, that
describes an interacting bosonic mode with a Kerr-type nonlin-
earity, which can be very weak. With driving by a coherent source
(a laser) at frequency 𝜔L, its Hamiltonian reads

Hao = Δb b
†b + U

2
b†b†bb + Ωb(b

† + b) (32)

where the cavity operators are represented by b† and b, Δb =
𝜔b − 𝜔L is the detuning between the cavity and the laser, U de-
notes the particle interaction strength (that provides the nonlin-
earity ) and the driving amplitude is given by Ωb. This is the par-
ticular case of the general Hamiltonian (1) when only one mode
is considered and U remains finite and, generally, small. The
level structure of this system (at vanishing driving) is given by

Table 1. Two-level system. Comparison of first- (population), second- and third-order photon correlations, i) between a squeezed thermal state and the
fluctuations in the Heitler regime and ii) between a displaced squeezed thermal state and the fluctuations in the laser-corrected Heitler regime, to various
orders in the driving Ω𝜎 .

g(N) Squeezed thermal Heitler fluctuations Displaced squeezed thermal Laser-corrected configuration

na
32Ω4

𝜎

Γ4
𝜎

+
1792Ω8

𝜎

3Γ8
𝜎

+O(Ω12
𝜎
)

32Ω4
𝜎

Γ4
𝜎

−
512Ω6

𝜎

Γ6
𝜎

+O(Ω8
𝜎
)

4Ω2
𝜎

Γ2
𝜎

+
32Ω4

𝜎

Γ4
𝜎

+O(Ω6
𝜎
)

4Ω2
𝜎

Γ2
𝜎

−
32Ω4

𝜎

Γ4
𝜎

+O(Ω6
𝜎
)

g(2)
Γ4
𝜎

64Ω4
𝜎

+ 11
4

+O(Ω4
𝜎
)

Γ4
𝜎

64Ω4
𝜎

+
Γ2
𝜎

2Ω2
𝜎

+O(Ω0
𝜎
) 0 +

32Ω2
𝜎

Γ2
𝜎

+O(Ω4
𝜎
) 0 +

128Ω2
𝜎

Γ2
𝜎

+O(Ω4
𝜎
)

g(3)
9Γ4

𝜎

64Ω4
𝜎

+ 51
4

+O(Ω4
𝜎
) 4 −

96Ω2
𝜎

Γ2
𝜎

+O(Ω4
𝜎
) 16 +

768Ω2
𝜎

Γ2
𝜎

+O(Ω4
𝜎
)

Γ6
𝜎

128Ω6
𝜎

+
9Γ4

𝜎

64Ω2
𝜎

+O(Ω−2
𝜎
)
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Figure 4. Second-order coherence function g(2)
b

of an anharmonic oscilla-
tor, as a function of the detuning Δb From light to dark blue, U increases
(the exact values areU∕𝛾b = 0.01, 0.1, 1, 2, for fixed 𝛾b = 1). A zoom-in of
the smallest case is shown in the inset.

the simple expression E(N) = N𝜔b + N(N − 1)U. The condition
for the laser frequency to hit resonantly the N-photon level is
𝜔L = E(N)∕N (or Δb = −(N − 1)U∕2).
We restrict our analysis of the dynamics 𝜌̇ = −i [Hao, 𝜌] +

(𝛾b∕2)b𝜌, with 𝛾b the decay rate of themode, to the case of vanish-
ing pumping, that is,Ωb ≪ 𝛾b. Solving the correlator equations in
this limit gives the population

⟨nb⟩ = Ω2
b

𝛾2b + 4Δ2
b

(33)

the second-order Glauber correlator

g(2)b =
⟨b†b†bb⟩⟨b†b⟩2 =

(
𝛾2b + 4Δ2

b

)
𝛾2b + (U + 2Δb)2

(34)

as well as the higher-order correlators

g(N)b =
(
𝛾2b + 4Δ2

b

)N−1

∏N−1
k=1

[
𝛾2b +

(
kU + 2Δb

)2] (35)

This shows that, when scanning in frequency, g(2)b has two ex-
trema, one minimum and one maximum, as can be seen in Fig-
ure 4, whose positions are given by

Δ± = −1
4

(
U ±

√
U2 + 4𝛾2b

)
(36)

with respective optimum antibunching (−) and bunching (+)

g(2)b

(
Δb = Δ±

)
= 1 +

U
(
U ±

√
U2 + 4𝛾2b

)
2𝛾2b

(37)

Both of these features are linked to the level structure: the an-
tibunching condition is that of resonantly driving the first rung,
E(1) (note that Δ− ≈ 0, especially when U ≫ 𝛾b), and the bunch-
ing condition, that of driving the second rung, E(2) (Δ+ ≈ −U∕2).
In both cases, all other rungs are off-resonance and will remain
much less occupied. Therefore, these effects are of a conventional

Figure 5. Second-order coherence function g(2)
b

together with its decom-
position, as a function of the non-linear interaction strength U following
the conventional antibunching frequency Δb = Δ−(U).

nature, as we have defined it in the previous section: CA and con-
ventional bunching (CB), respectively. The difference with reso-
nance fluorescence is that here, CA is not a perfect interference
at all orders (g(N) = 0 for N > 1) but an approximated one. For
instance, g(2)b (Δ−) ≈ (𝛾b∕U)2 (to leading order in U∕𝛾b), is only
zero in the limit U → ∞, when the system converges to a 2LS.
On the other hand, there was not CB in resonance fluorescence
due to the lack of levels N > 1. Here, we see it appearing for the
first time.
The decomposition of g(2)b according to Equation (6) yields

0 =
U2

𝛾2b + (U + 2Δb)2
and 2 = −

2U
(
U + 2Δb

)
𝛾2b + (U + 2Δb)2

(38)

with 1 = 0 in the limit of low driving (as in the case of theHeitler
regime), which means that there are no anomalous correlations
to leading order in Ωb. 0 > 0 means that fluctuations are al-
ways super-poissonian. The remaining term 2 can take positive
(for Δb > −U∕2) and negative (for Δb < −U∕2) values, resulting
in super-Poissonian statistics or, on the contrary, favouring anti-
bunching. The various terms and the total g(2)b are shown in Fig-
ure 5 as a function ofU, for the case Δb = Δ−(U) that maximizes
antibunching, showing the evolution from Poissonian fluctua-
tions in the linear regime of a driven harmonic mode to an-
tibunching as the two-level limit is recovered with 0 → 1 and
2 → −2 (cf. Figure 2a).
As previously, the statistics can be modified by adjusting the

coherent component of the original signal b with an external
laser 𝛽 = |𝛽|ei𝜙. The resulting signal is then described by the
operator s = Tb + iR𝛽, with coherent contribution now given by⟨s⟩ = T⟨b⟩ + iR𝛽. To simplify further the calculations, we choose
𝛽 = T

R
𝛽′, where 𝛽′ is also written in terms of the driving ampli-

tude and an adimensional amplitude 

𝛽′ =
Ωb

𝛾b
 (39)

Additionally, we shift the phase 𝜙→ 𝜙 + 𝜋, so in the limit of high
U, all the results are consistent with the previous case. Then, the
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Figure 6. Interference between the output of a driven anharmonic system and an external laser of intensity proportional to  and phase 𝜙. Various
columns shown increasing orders of photon correlations, with the upper row showing a phase-cut along the lines that intercept one of the resonances
in the full landscape shown in the bottom row (the superbunching case is not shown). Parameters: U = 𝛾b, Ωb = 0.001 𝛾b, T

2 = 0.5 and 𝛾b = 1.

total population becomes

⟨ns⟩ = T2Ω2
b

𝛾2b

(
𝛾2b + 4Δ2

b

) [
 2

(
𝛾2b + 4Δ2

b

)
+4𝛾b

(
𝛾b cos𝜙 − 2Δb sin𝜙

)
+ 4𝛾2b

]
(40)

and the two-photon correlations become

g(2)s = Γ̃2b
{
Γ̃2b

[
𝛾2b + (U + Δb)

2
]
 4

− 8𝛾b
[
𝛾2b + (U + Δb)

2
]
(𝛾b cos𝜙 − 2Δb sin𝜙)

3

+
[
16𝛾2b

(
𝛾2b+(U+2Δb)

2
)
+8𝛾2b cos 2𝜙

(
𝛾2b − 2Δb(U+2Δb)

)
− 8𝛾3b sin 2𝜙(U + 4Δb)

]
 2

− 32𝛾3b
[
𝛾b cos𝜙 − (U + 2Δb) sin𝜙

]
 + 16𝛾4b

}/
{[
𝛾2b + (U + 2Δb)

2
]

×
[
 2

(
𝛾2b + 4Δ2

b

)
+ 4𝛾b

(
𝛾b cos𝜙 − 2Δb sin𝜙

)
+ 4𝛾2b

]2}
(41)

where we have used Γ̃2b = 𝛾2b + 4Δ2
b . Here as well, we can compare

the enrichment brought by the interfering laser by comparing
Equations (33) and (40) for populations and Equations (34) and
(41) for second-order correlations, with and without the interfer-
ence, respectively. In this case, higher-order correlators could also
be given in closed-form but are too awkward to be written here.
The cases g(k)s for 2 ≤ k ≤ 4 are shown in Figure 6 as a function

of the parameters of the interfering laser. By comparing this to
Figure 3 for the 2LS, one can see that the anharmonic system is
significantly more complex, with resonances for the correlations
that occur for specific conditions of the phase for each  that
leads to unconventional forms of antibunching or superbunch-
ing, rather than to be simply out-of-phase previously. This makes
salient the punctual character of the unconventionalmechanism:
each strong correlation at any given order must be realized in a
very particular way: the one that matches the corresponding in-
terference.
The maximum bunching (UB) accessible with the interfer-

ing laser is reached when the coherent-fraction population goes
to zero (1-photon suppression) for which the conditions on the
phase and amplitude read tan𝜙1 = −2Δb∕𝛾b and 1 = −2 cos𝜙1.
Those conditions are exactly the same as Equation (31) forN = 1.
Analogous conditions for the multi-photon cases can be found
solving g(N)s = 0. For the case N = 2, we find four different roots:

2,k =
2iei𝜈k𝜙𝛾b

(U + 2Δb) + i𝜈k𝛾b

{
1 + 𝜇k

√
U

(U + 2Δb) + i𝜈k𝛾b

}
(42)

with k = 1, 2, 3, 4 and 𝜈k = (−1)⌊k∕3⌋, 𝜇k = (−1)k+1 introduced to
shorten the notations. Since these should be, by definition, real,
this imposes another constrain on𝜙. Although the expression for
real-valued 𝜙 to make  real cannot be given in closed form, they
are readily found numerically. It is possible to get four real solu-
tions, that are however degenerate. There are only two different
conditions for 𝜙 since the real part is the same for each pair of
roots, that is,ℜ(2,1) = ℜ(2,4) andℜ(2,2) = ℜ(2,3). This yields
two physical solutions. For instance, forU = 𝛾b andΔb = Δ− (the
case shown in Figure 6), g(2)s vanishes at 2,1 ≈ 0.615 and 𝜙2,1 ≈
0.659 𝜋 for one solution and at 2,2 ≈ 2.907 and 𝜙2,2 ≈ 0.860𝜋
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Table 2. Anharmonic oscillator. Comparison of first- (population), second-, and third-order photon correlations, i) between a displaced squeezed thermal
state and the anharmonic oscillator with Δb = Δ− (optimal antibunching) and ii) between a displaced squeezed thermal state and the laser-corrected
for the optimal g(2) configuration (2,2 and 𝜙2,2). The abbreviated notation Ω̃b indicates the normalized pumping referred to the cavity decay, that is,
Ωb∕𝛾b. We have also taken 𝛾b = U for concision of the expressions.

g(N) Displaced squeezed thermal AO antibunching Displaced squeezed thermal Laser-corrected configuration

na 2.89 Ω̃2
b
+ 4.63 Ω̃4

b
+O(Ω̃6

b
) 2.89 Ω̃2

b
− 10.36 Ω̃4 +O(Ω̃6

b
) 1.52 Ω̃2

b
+ 4.63 Ω̃4

b
+O(Ω̃6

b
) 1.52 Ω̃2

b
− 3.25 Ω̃4

b
+O(Ω̃6

b
)

g(2) 0.38 + 5.18 Ω̃2
b
+O(Ω̃4

b
) 0.38 + 0.91 Ω̃2

b
+O(Ω̃4

b
) 0 + 12.75 Ω̃2

b
+O(Ω̃4

b
) 0 + 47.84 Ω̃2

b
+O(Ω̃4

b
)

g(3) 0.80 + 1.64 Ω̃2
b
+O(Ω̃4

b
) 0.06 + 0.37 Ω̃2

b
+O(Ω̃4

b
) 4 − 34.52 Ω̃2

b
+O(Ω̃4

b
) 0.71 + 0.78 Ω̃2

b
+O(Ω̃4

b
)

for the other one. Similar resonances in higher-order correlations
could be found following the same procedure.
Regarding the quantum state realized in the system, similar

conclusions can be drawn for the anharmonic oscillator than for
the two-level system (previous section, cf. Tables 1 and 2). Specif-
ically for this case, the system can be described by a displaced
squeezed thermal state, properly parameterized, but to lowest-
order in the driving and for the population and the two-photon
correlation only. Departures arise to next-order in the pumping
or to any-order for three-photon correlations and higher. The
main differences is that the anharmonic oscillator case has to be
worked out numerically, so the prefactors are given by the solu-
tions that optimize the antibunching, for the system parameters
indicated in the caption. The same result otherwise holds that the
Gaussian-state description is a low-driving approximation valid
for the population and two-photon statistics. We find this again
for the systems studied in the following sections, although this
point will not be stressed anymore.

6. Jaynes–Cummings Blockade

Now that we have considered the two-level system on the one
hand (Section 4) and the bosonic mode on the other hand (Sec-
tion 5), we turn to the richer and intricate physics of their cou-
pling. We will show how the themes of the previous sections
allow us to unify in a fairly concise picture the great variety of
phenomena observed and/or reported in isolation. We thus con-
sider the case where a cavity mode, with bosonic annihilation op-
erator a and frequency 𝜔a is coupled with strength g to a 2LS,
with operator 𝜎 and frequency 𝜔𝜎 , as described by the Jaynes–
Cummings Hamiltonian.[122,123]

Hjc = Δ𝜎𝜎
†𝜎 + Δaa

†a + g
(
a†𝜎 + 𝜎†a

)
+Ωa

(
ei𝜙a† + e−i𝜙a

)
+ Ω𝜎

(
𝜎† + 𝜎

)
(43)

with Δ𝜎 ≡ 𝜔𝜎 − 𝜔L and Δa ≡ 𝜔a − 𝜔L the detunings from the
laser, and where we also include both a cavity and a 2LS driving
term by a laser of frequency 𝜔L, with respective intensities Ωa
and Ω𝜎 and relative phase 𝜙. We assume g and Ω𝜎 to be real
numbers, without loss of generality since the magnitudes of
interest (G(N)

a ) are independent of their phases. The relative
phase 𝜙 between dot and cavity drivings is, on the other hand,
important. We also limit ourselves in this text to the case where
the frequencies of the dot and cavity drivings 𝜔L are identical and
the analysis could be pushed further to the case where this limi-

tation is lifted. The dissipation is taken into account through the
master equation 𝜕t𝜌 = i[𝜌, Hjc] + (𝛾𝜎∕2)𝜎𝜌 + (𝛾a∕2)a𝜌 where 𝛾a
is the decay rate of the cavity. Solving for the steady state in
the low-driving regime, that is, when Ωa ≪ 𝛾a , 𝛾𝜎 , yields for the
populations,[109]

⟨na
𝜎
⟩ = 4

4g2Ω2
a
𝜎

+ Γ̃2𝜎
a
Ω2

a
𝜎

− 4gΩaΩ𝜎

(
±2Δa

𝜎
cos𝜙 + 𝛾𝜎

a
sin𝜙

)
16g4 + 8g2

(
𝛾a𝛾𝜎 − 4ΔaΔ𝜎

)
+ Γ̃2aΓ̃2𝜎

(44)

with matching upper/lower indices (including ±) and with Γ̃2i =
𝛾2i + 4Δ2

i (for i = a, 𝜎). Similarly, the two-photon coherence func-
tion from the cavity can be found as follows:

g(2)a =
{[
16g4 + 8g2

(
𝛾a𝛾𝜎 − 4ΔaΔ𝜎

)
+ Γ̃2aΓ̃

2
𝜎

]
×
[
16g4

(
1 + 𝜒2

)
+ 8g2

(
2𝜒2Γ̃211 + 4Δ𝜎Δ̃11 − 𝛾𝜎𝛾̃11

)
+ Γ̃2

𝜎
Γ̃211 − 16g𝜒

(
Δ𝜎 Γ̃211 + 4g2Δ̃11[1 + 𝜒2]

)
cos𝜙

+ 8g2𝜒2
(
4g2 − 𝛾𝜎𝛾̃11 + 4Δ𝜎Δ̃11

)
cos 2𝜙

− 8g𝜒
(
𝛾𝜎 Γ̃211 + 4g2𝛾̃11[𝜒

2 − 1]
)
sin𝜙

+ 16g2𝜒2
(
𝛾aΔ𝜎 + 𝛾𝜎Δ̃12

)
sin 2𝜙

] }/
{[
16g4 + 8g2

(
𝛾a𝛾̃11 − 4ΔaΔ̃11

)
+ Γ̃2aΓ̃

2
11

]
×
[
4g2𝜒2 + Γ̃2

𝜎
− 4g𝜒

(
2Δ𝜎 cos𝜙 + 𝛾𝜎 sin𝜙

)]2}
(45)

where Δ̃ij ≡ iΔa + jΔ𝜎 , 𝛾̃ij = i𝛾a + j𝛾𝜎 , Γ̃2ij ≡ 𝛾̃2ij + 4Δ̃2
ij and 𝜒 =

Ω𝜎∕Ωa is the ratio of excitation. The range of 𝜒 extends from
0 to ∞ so that it is convenient to use the derived quantity 𝜒 =
2
𝜋
atan(𝜒), which varies between 0 and 1. Equation (45) is admit-

tedly not enlightening per se but it contains all the physics of con-
ventional and unconventional photon statistics that arises from
self-homodyning, including bunching and antibunching, for all
the regimes of operations. It is remarkable that so much physics
of dressed-state blockades and interferences can be packed-up
so concisely.
We plot a particular case of this formula as a function of 𝜔a

and𝜔L in Figure 7a, namely, only driving the cavity (Ω𝜎 = 𝜒 = 0),
in which case the expression halves in size.[109] The general case
is available through an applet[124] and we will shortly discuss
other cases as well. The structure that is thus revealed can be de-
composed in two classes, as shown in Figure 7b: the conventional
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Figure 7. Jaynes–Cummings model. a) Photon statistics g(2)a (log scale).
b) Structure in terms of conventional C (solid) and unconventional U
(dashed) features for B, bunching (red) and A, antibunching (blue). CA
(CB) is given by the resonant condition with the first (second) JC rung
(cf. Equations (46)). UA is given by the interference condition Equa-
tion (47) andUB by𝜔L = 0. c) Population na, showing that i) only polariton
emit strongly and ii) how the depletion (not an exact zero) at 𝜔L = 0 ac-
counts for UB. Other features are not visible in the population only. d,e)
g(2)a (black line) for the two cuts shown in dashed lines in (a) with the cav-
ity frequency either d) resonant with the 2LS or e) chosen to optimize UA
(𝜔a = 29.5𝛾𝜎). The decomposition in j components is also shown, with
the sign of 2 changed when it is negative and plotted dashed. Parameters:
𝜔𝜎 = 0, 𝛾a = 0.1 g, and 𝛾𝜎 = 0.01 g.

statistics that originates from the nonlinear properties of the
quantum levels, in solid lines, and the unconventional statistics
that originates from interferences, in dashed lines. Both can give
rise to bunching (in red) and antibunching (in blue). We now
discuss them in details.

6.1. Conventional Statistics

Conventional features arise from the laser entering in resonance
with a dressed state of the dissipative JC ladder,[125,126] which en-
ergy is the real part of

E(N)± = N𝜔a +
𝜔𝜎 − 𝜔a

2
− i

(2N − 1)𝛾a + 𝛾𝜎
4

±
√
(
√
Ng)2 +

(𝜔a − 𝜔𝜎
2

− i
𝛾a − 𝛾𝜎
4

)2
(46)

The first rung E(1)± yields the CA lines in Figure 7b. This corre-
sponds to an increase in the cavity population, as shown in Fig-
ure 7c as two white lines, corresponding to the familiar lower and
upper branches of strong coupling. This figure also makes clear
how the signal is increased when hitting the first rung (Rabi dou-
blet) and strongly suppressed at the UB condition. The system ef-
fectively gets excited, but through its first rung only. The second
rung blocks further excitation according to the conventional an-
tibunching (CA), or photon-blockade, scenario, so that with the
increase of population goes a decrease of two-photon excitation,
leading to antibunching. This is in complete analogy with the
CA that appears in the Heitler regime of resonance fluorescence.
This is not an exact zero in g(2)a in the low driving regime (the
imaginary part of the root does not vanish) because the condi-
tions for perfect interference are no longer met having a strongly
coupled cavity with a decay rate. It was recently shown[49] that
even in the vanishing coupling regime, g → 0, when the cavity
acts as a mere detector of the 2LS emission, perfect antibunching
is reduced due to the finite decay rate (𝛾a representing the preci-
sion in frequency detection). This is due to the fact that the cavity
is effectively filtering out some of the incoherent fraction of the
emissionwhile the coherent fraction is still fully collected. The in-
terference condition in the g(2)a decomposition, 1 + 1 = −2 = 2,
is no longer satisfied (see Figure 2 of ref. [49]).
On the other hand, driving resonantly the second rung, E(2)± ,

leads to conventional bunching (CB), shown as red solid lines
in Figure 7b. These quantum features are well known and also
found with incoherent driving of the system in the spectrum of
emission[126]; they are not conditional to the coherence of the
driving. This also corresponds to an increase in the cavity pop-
ulation, although this is not showing in Figure 7c, where only
first-order effects appear.

6.2. Unconventional Statistics

We now turn to the other features in g(2)a that do not correspond
to a resonant condition with a dressed state: these are, first, a su-
perbunching line at𝜔L = 0 (dashed red in Figure 7b) and second,
two symmetric antibunched lines (dashed blue). All correspond
to a self-homodyne interference that the coherent field driving
the cavity can produce on its own, without the need of a second
external laser. In this case, this also involves several modes (de-
grees of freedom) and more parameters than in resonance flu-
orescence, so the phenomenology is richer, but can be tracked
down to the same physics. We call them again unconventional
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antibunching (UA) and unconventional bunching (UB) in full
analogy with the Heitler regime of resonance fluorescence and
in agreement with the literature that refers to particular cases of
this phenomenology as “unconventional blockade”[33] (the term
“tunnelling” has also been employed but the underlying physical
picture might be misleading[10]).
We first address antibunching (UA). This is found by mini-

mizing g(2)a in regions where there is no CA, which yields (for the
particular case 𝜒 = 0)

Δa = −Δ𝜎

(
1 +

4g2

𝛾2
𝜎
+ 4Δ2

𝜎

)
(47)

which is the analytical expression for the the dashed blue lines in
Figure 7b (we remind that Δi ≡ 𝜔i − 𝜔L for i = a, 𝜎). The most
general case when both the emitter and cavity are excited can be
found in ref. [109]. The minimization process also provides the
condition for CA, due to the first-rung resonance, but this can be
disconnected from UA beyond the fact that CA is already identi-
fied because UA also admits an exact zero, which is found by ei-
ther solving g(2)a = 0 or setting to zero the two-photon probability
in the wavefunction approximation.[121] This gives the conditions
on the detunings as function of the system parameters[127]

Δ2
𝜎
=
𝛾2
𝜎

4

(
4g2

𝛾𝜎(𝛾𝜎 + 𝛾a)
− 1

)
(48a)

Δa = −
(
2 +

𝛾a

𝛾𝜎

)
Δ𝜎 (48b)

These conditions are met in Figure 7a at the lowest point
where the blue UA line intersects the (e) cut (and on the sym-
metric point𝜔a < 0). When the laser is at resonance with the 2LS
(Δ𝜎 = 0) and cavity losses are large (𝛾a ≫ 𝛾𝜎), this occurs when

the cooperativity 𝒞 ≡
4g2

𝛾a𝛾𝜎
= 1. This type of UA interference is

second-order, so it is not apparent in the cavity population at low
driving, Figure 7b. One has to turn to two-photon correlations in-
stead. Note also that UA requires a cavity-emitter detuning that
is of the order of g.
Since this is an interference effect, we perform the same de-

composition of g(2)a in terms of coherent and incoherent fractions,
as in previous sections, given by Equation (6), and show the terms
that are not zero in Figure 7d,e. The full expressions are given in
ref. [109]. The term 1 is exactly zero to lowest order in the driving
and only the fluctuation-statistics 0 and the two-photon interfer-
ence2 play a role, like in theHeitler regime of resonance fluores-
cence. Note that in this decomposition, there is no difference be-
tween the CA and UA, since both occur approximately when the
statistics of the laser and fluctuations, 1 + 0 = 2, are compen-
sated by their two-photon interference, 2 = −2, again as in the
Heitler regime. The fundamental differences between these two
types of antibunching will be discussed later on. Before that, we
address the last feature: the unconventional bunching at 𝜔L = 0.
The reason for the super-bunching peak labeled as UB in Fig-

ure 7b is also the same as in resonance fluorescence: the cancella-
tion of the coherent part, in this case, of the cavity emission, and
the consequent dominance of the fluctuations only, which are
super-Poissonian in this region. Therefore, contrary to the CB,

this superbunched statistics is not directly linked to an enhanced
N-photon (for any N) emission and it does not appear one could
harvest or Purcell-enhance it, for instance, by coupling the sys-
tem to an auxiliary resonant cavity. Since it is pretty much wildly
fluctuating noise, the actual prospects of multi-photon physics
in this context remains to be investigated. In any case, the con-
ditions that yield the super-Poissonian correlations can thus be
obtained by minimizing the cavity population ⟨na⟩ or, from the
wavefunction approach, by minimizing the probability to have
one photon, which coincide with the coherent fraction to lowest
order inΩa. One cannot achieve an exact zero in this case but the
cavity population is clearly undergoing a destructive interference,
as shown by the black horizontal line in Figure 7c. The resulting
condition, Δ𝜎 = 𝜒g cos𝜙, links the laser frequency with the 2LS
one: which reduces to simplyΔ𝜎 = 0 (laser in resonance with the
2LS) if i) the dot and cavity are driven with a 𝜋∕2-phase difference
or ii) the laser drives the cavity only (𝜒 = 0).
So far, we have focused on the particular case of Equation (45)

where Ω𝜎 = 0. This is the case dominantly studied in the liter-
ature and the one assumed to best reflect the experimental sit-
uation. It is also for our purpose a good choice to clarify the
phenomenology that is taking place and how various types of
statistics cohabit. It must be emphasized, however, that while
the physics is essentially the same in the more general config-
uration, the results are, even qualitatively, significantly different
in configurations where the two types of pumping are present.
This is shown in Figure 8. While conventional features are sta-
ble, being pinned to the level structure, the unconventional ones
that are due to interferences are very sensitive to the excitation
conditions and get displaced or, in the case of QD excitation only,
even completely suppressed. If one is to regard conventional fea-
tures as more desirable for applications, this figure is therefore
again an exhortation at focusing on the QD excitation configura-
tion. Also, one can notice that CA and UA lines can meet when
both types of pumping are present, as shown in Figure 8e,j. This
is actually a valuable intersection that brings together the best of
both mechanisms, namely, the low-antibunching of UA and the
high-population and all-order suppression of CA.[109]

While we have focused on the two-photon statistics, both the
conventional and unconventional effects occur at the N-photon
level, in which case they manifest through higher-order coher-
ence functions g(N), and their Nth-order behavior is one of the
key differences between conventional and unconventional statis-
tics. Regarding conventional features, resonances happen at the
N-photon level whenN photons of the laser have the same energy
than one of the dressed states (and only one, thanks to the JC
nonlinearities): 𝜔L = Re{E(N)± }∕N. The blockade that is realized
is a real blockade in the sense that all the correlation functions
are then depleted simultaneously. In Figure 9, the counterpart
of Figure 7a is shown for g(3)a and g(4)a and shows how more con-
ventional features appear with increasing N but otherwise stay
pinned to the same conditions, while the number of unconven-
tional features stays the same, but their positions drift with N,
so that one cannot simultaneously realize g(N)a < 1 for all N. This
is an important difference between a convex mixture of Gaus-
sian states, which is a semi-classical state, and a state beyond this
class, which is genuinely quantum, as previouslymentioned. The
latter requires the ability to imprint strong correlations at several
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Figure 8. Effect of the type of driving on the two-photon statistics in the cavity emission of the Jaynes–Cumming model. The upper row shows Equa-
tion (45) for the parameters indicated in each panel and the lower row identifies the various features through the structure of conventional (Equation (46
c), solid) and unconventional (Equation (47), dashed) lines. Chosen parameters: 𝛾a = 0.1 g, 𝛾𝜎 = 0.01 g.

Figure 9. Higher-order photon statistics, at (left column) three- and
(right) four-photon level. Top row is for cavity excitation and bottom row
for 2LS excitation. In the top row, we have superimposed the right-half
of the conventional (solid) and unconventional (dashed) features, putting
them in grey when not present for a given order of the correlations. The
conventional features grow in numbers and stay pinned at the same po-
sitions, while the unconventional ones remain in the same number but at
different positions. Parameters: 𝛾a = 0.1 g, 𝛾𝜎 = 0.001 g.

and possibly all photon-orders. This suggests that CA could be
more suited than UA for quantum applications. Note how with
the 2LS direct excitation, shown in the second row of Figure 9,
one only finds conventional statistics, with magnified features
such as broader antibunching in the photon-like branch and nar-
rower one in the exciton-like branch. The N-photon resonances
are neatly separated for large-enough detuning, which is the un-
derlying principle to harness rich N-photon resources.[128]

We now turn to another noteworthy regime, out of the many
configurations of interest that are covered by Equation (45),
namely, the transition from weak to strong coupling. The
so-called strong-coupling, when g > |𝛾a − 𝛾𝜎|∕4, is one of the
coveted attributes of light–matter interactions, leading to the
emergence of dressed states and to a new realm of physics.
It is also, however, an ill-defined concept in the presence of
detuning[126] and one would still find the dressed-state structure
of Figure 9 in the largely detuned regime when driving the 2LS,
even up to large photon-order.[26] The restructuration of the statis-
tics when crossing over to the weak-coupling regime is explored
in Figure 10a, where we track the impact on g(2)a of changing the
coupling g, on the cut in Figure 7e that intersects from top to bot-
tom CB, UA (twice), UB, and CA. One can see how the features
converge as the coupling is reduced, with the conventional ones
disappearing first, which is expected from the disappearance of
the underlying dressed states that are responsible for the conven-
tional effects. The unconventional antibunching, on the other
hand, is more resilient and can be tracked well into weak cou-
pling where all effects ultimately vanish at the same time as they
merge. Conventional antibunching is the most robust feature,
as can be seen by tracking, for instance, the UB peak at the point
where it is the most isolated from the other features, namely, at
resonance where𝜔L = 𝜔a = 𝜔𝜎 = 0. Spanning over the twomain
parameters that control strong coupling, the coupling strength g
(in units of 𝛾𝜎) and the rates of dissipation rates 𝛾a∕𝛾𝜎 , one sees
that the strong bunching is not always sustained but can be
instead overtaken by conventional antibunching, which is the
well-defined blue line in the figure (given by Equation (47)). The
region where the UB peak is well-defined can be identified by in-
specting the second derivative of g(2)a as a function of the laser fre-
quency, 𝜕2

𝜔L
g(2)a at 𝜔L = 0 and is shown in Figure 10b as a dashed

black line. The white line that separates the antibunching region
from the bunching one corresponds to the critical coupling
strength gP between the cavity and the 2LS that leads to g(2)a = 1
(its expression is given in ref. [109]). The strong-weak coupling
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Figure 10. Transition to weak coupling and non-vanishing pumping. a) Evolution of g(2)a along the cut (e) in Figure 7 as a function of the coupling
strength g, showing how the structure collapses on the bare modes. CA (lowest blue line) is the first feature to vanish with decreasing g, as the underlying
dressed states disappear. b) Behavior of the “center” point at 𝜔L = 𝜔a = 0 that typically features the UB peak, although not exclusively as it can also
exhibit antibunching, even in strong-coupling (Black dashed line indicates when the behavior of g(2)a changes from local minimum to maximum). c)
Effect of increasing pumping, computing the features shown in Figure 7e) (vanishing pumping) as a function of (finite) driving Ωa. For high pumping,
Ωa ≳ 𝛾a, every feature (both bunching and antibunching) is spoiled and eventually disappears (g

(2)
a → 1). The inset figure compares the same cut of g(2)a

for the cases of vanishing driving (Ωa → 0) and finite driving (Ωa∕𝛾a = 0.5, 2, and 10). Lighter colors correspond to higher driving amplitudes.

frontier g∕𝛾𝜎 < |𝛾a∕𝛾𝜎 − 1|∕4 is indicated with a dotted green
line as a reference, illustrating again the lack of close connection
between strong-coupling and the photon-statistics features.
We conclude the discussion of the Jaynes–Cummings system

with the second main difference between conventional and un-
conventional statistics, namely their resilience to higher driving.
All our results are exact in the limit of vanishing driving, that is to
say, in the approximation of neglecting Ω terms of higher-orders
than the smallest contributing one. For non-vanishing driving,
numerically exact results can be obtained instead (and can be
made to agree with arbitrary precision to the analytical expres-
sions, as long as the driving is taken low enough, what we have
consistently checked). A characteristic of the unconventional fea-
tures is that, being due to an interference effect for a given pho-
ton number only, it is fragile to driving, unlike the conventional
features which displaymore robustness. This is illustrated in Fig-
ure 10c for the case of cavity driving Ωa, where we compare the
analytical result from Equation (45), in black, with the numerical
solution forΩa = 0.25𝛾a, so still fairly small. One can see how the
conventional features are qualitatively preserved and quantita-
tively similar to the analytical result, while the unconventional an-
tibunching has been completely washed out. One could consider
still other aspects of the physics embedded in Equation (45), such
as the adverse effect of increasing pumping to increase the signal.
The inquisitive reader can explore them through the applet.[124]

Instead of discussing these further, we now turn to another plat-
form of interest that bears many similarities with the Jaynes–
Cummings results.

7. Polariton Blockade

Microcavity polaritons[26] arise from the strong coupling (with
coupling g) between a cavity photon a of frequency𝜔a and amate-
rial excitation b of frequency𝜔b, both assumed here to be bosonic
fields. The material excitation exhibits an interaction of some
sort (Coulomb interactions for excitons–polaritons since exci-
tons are electron–hole pairs) that we parameterize asU∕2. Thus,

the Hamiltonian reads Hpol = Δaa
†a + Δbb

†b + g(a†b + b†a) +
Ωa(e

i𝜙a† + e−i𝜙a) + Ωb(b
† + b) + U

2
b†b†bb, where Δa,b = 𝜔a,b − 𝜔L

are the frequencies of cavity/exciton referred to the frequency
of the laser 𝜔L that drives the photonic/excitonic field with am-
plitudes Ωa,b. The phase difference between them 𝜙 = 𝜙a − 𝜙b
can be chosen such that 𝜙a = 𝜙 and 𝜙b = 0. The master equation
for the dissipative dynamics of polaritons reads 𝜕t𝜌 = i[𝜌, Hpol] +
(𝛾b∕2)b𝜌 + (𝛾a∕2)a𝜌, where 𝛾a and 𝛾b are the decay rates of the
photon and the exciton, respectively. As compared to the Jaynes–
Cummings Hamiltonian (43), the polariton Hamiltonian sub-
stitutes the 2LS by a weakly interacting Bosonic mode, b → 𝜎

with nonlinearities b†b†bb, thus slightly displacing the state with
two excitations while the 2LS forbids it entirely. In the case
where U → ∞, the Jaynes–Cummings limit is recovered, but in
most experimental cases, U∕𝛾a is very small. In all cases, in the
low driving regime (Ωa → 0), the steady-state populations of the
photon and the exciton are given by the same expressions as in
the Jaynes–Cummings model, Equation (44) with 𝜎 → b, since
the 2LS converges to a bosonic field in the linear regime. The dif-
ferences arise in the two-particlemagnitudes (cf. Equation (45)).

g(2)a =
{[
16g4 + 8g2

(
𝛾a𝛾b − 4ΔaΔb

)
+ Γ̃2aΓ̃

2
b

][
Γ̃2bΓ̃

2
11

(
𝛾2b + Ũ2

12

)
+ 8g2

(
U2[4ΔbΔ̃11 − 𝛾b𝛾̃11] + 2Γ̃211[𝛾

2
b + Ũ2

12]𝜒
2

+ 8UΔ2
bΔ̃11 − 2U𝛾2b Δ̃13 − 4U𝛾a𝛾bΔb

)
+ 16g4

(
U2 + [𝛾̃211 + (U + 2Δ̃11)

2]𝜒4
)

− 16g𝜒 cos𝜙
(
ΔbΓ̃211[𝛾

2
b + 4Ũ2

12] + 2g2[U(2Δ̃11Ũ12 − 𝛾b𝛾̃11)

+ (2U2Δ̃11 + 2ΔbΓ̃211 +U{𝛾a𝛾̃11 + 4Δ̃11Δ̃12})𝜒
2]
)

+ 8g2𝜒2 cos 2𝜙
(
4g2U[U + 2Δ̃11] −U2[𝛾b𝛾̃11 − 4ΔbΔ̃11]

− [𝛾2b − 4Δ2
b ]Γ̃

2
11 + 2U[𝛾2aΔb + Δ̃12(4ΔbΔ̃11 − 𝛾2b )]

)
− 8g𝜒 sin𝜙

(
𝛾bΓ̃211[𝛾

2
b + Ũ2

12] + 4g2[𝛾bΓ̃211𝜒
2
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+U(𝜒2 − 1)(U𝛾̃11 + 2𝛾bΔa + 2𝛾̃12Δb)]
)

+ 8g2𝜒2 sin 2𝜙
(
− 4g2U𝛾̃11+4𝛾bΔbΓ̃211 + 2U2[𝛾aΔb + 𝛾bΔ̃12]

+U[𝛾2a 𝛾b + 4𝛾bΔ̃2
12 + 𝛾aΓ̃

2
b ]
)]}/{(

Γ̃2aΓ̃
2
11

[
𝛾2b + Ũ2

12

]
+ 16g4

[
𝛾̃211 +

(
U + 2Δ̃11

)2] + 8g2
[
U2

(
𝛾a𝛾̃11 − 4ΔaΔ̃11

)
+ Γ̃211

(
𝛾a𝛾b−4ΔaΔb

)
−2U

(
𝛾2a Δ̃11̄−2𝛾a𝛾bΔb + 4ΔaΔ̃11Δ̃12

)])
×
(
4g2𝜒2 + Γ̃2b − 4g𝜒

[
2Δb cos𝜙 + 𝛾b sin𝜙

])2}
(49a)

g(2)b =
{
Γ̃211

[
16g4 + 8g2

(
𝛾a𝛾b − 4ΔaΔb

)
+ Γ̃2aΓ̃

2
b

]}/
{
Γ̃2aΓ̃

2
11

[
𝛾2b + Ũ2

12

]
+ 16g4

[
𝛾̃211 +

(
U + 2Δ̃11

)2]
+ 8g2

[
U2

(
𝛾a𝛾̃11 − 4ΔaΔ̃11

)
+ Γ̃211

(
𝛾a𝛾b − 4ΔaΔb

)
−2U

(
𝛾2a Δ̃11̄ − 2𝛾a𝛾bΔb + 4ΔaΔ̃11Δ̃12

)]}
(49b)

where we have used the short-hand notation 𝛾+ = 𝛾a + 𝛾b, Δ± =
Δa ± Δb and Γ2c = 𝛾2c + 4Δ2

c for c = a, b,+ as well as Δ̃ij ≡ iΔa +
jΔb, 𝛾̃ij = i𝛾a + j𝛾𝜎 , Γ̃2ij ≡ 𝛾̃2ij + 4Δ̃2

ij, Ũij = iU + jΔb and j̄ denotes

negative integer values (j̄ = −j). Note that a major conceptual dif-
ferencewith the Jaynes–Cummingsmodel is that it now becomes
relevant to consider the emitter (in this case, excitonic) two-
photon coherence function, g(2)b , while in the Jaynes–Cummings

case, one has the trivial result g(2)𝜎 = 0. The exciton statistics en-
joys noteworthy characteristics, as we shall shortly see.
We repeat in Figure 11 the same plots for the polariton sys-

tem as for the Jaynes–Cummings case (Figure 7). The applet[124]

also covers this more general case. The cavity population is ex-
actly the same, as already mentioned, and all other panels bear
clear analogies. The two-photon coherence function converges
to the Jaynes–Cummings one in the infinite interaction limit
(limU→∞ g(2)a ) but is distinctly distorted for high-energy laser driv-
ing in the positive photon–exciton detuning region, and features
an additional UA and CB couple of lines in the negative detun-
ing region. The decomposition of g(2)a as in Equation (6) can be
made (the expressions are however bulky and not enlightening)
and are shown in Figure 11d,e.

7.1. Conventional Statistics

Like in the Jaynes–Cummings model, one can identify the con-
ventional antibunching (CA) and bunching (CB) by mapping the
observed features to an underlying blockademechanism, namely,
the positions at whichN-photon excitation occurs, which is when
the laser is resonant with one of the states in the N-photon
rung. The first rung that provides CA is given by the same Equa-
tion (46), with N = 1, since this corresponds to the linear regime
where both systems converge. One finds, therefore, that the two
CA blue lines in Figure 11a, marked in solid blue in (b), are the
same as in the Jaynes–Cummings model. They coincide as well
with the white regions in Figure 11c where the cavity emission

Figure 11. Polaritonic counterpart of Figure 7. a) g(2)a and b) its structure
in terms of conventional and unconventional features. CA (CB) is given by
the resonant condition with the first (second) polaritonmanifold, cf. Equa-
tions (46) (for N = 1) and (50). UA is given by the interference condition
Equation (51) andUB by𝜔L = 0. c) Population na and (d-e) g

(2)
a (black line)

for the two cuts shown in dashed lines in (a) with the cavity frequency ei-
ther d) resonant with the 2LS or e) chosen to optimize UA (𝜔a = 8.63 g).
The decomposition in j components is also shown, with the same con-
ventions as in Figure 7. Parameters: 𝛾a = 0.1 g , 𝛾b = 0.01 g, andU = 10𝛾a.

is enhanced. This is the standard one-photon resonance, with a
blockade of photons into higher rungs due to the non-linearity
now introduced by the interactions (instead of the 2LS).
Higher rungs are different from the Jaynes–Cummings

model, but their effects otherwise follow from the same prin-
ciple and they are similarly obtained by diagonalizing the
effective Hamiltonian in the corresponding N-excitation Hilbert
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subspace, that is, in the basis {|N, 0⟩ , |N − 1, 1⟩ ,…, |0, N⟩}
(where each state is characterized by the photon and exciton
number). At the two-photon level, one is interested in the second
rung, which contains three eigenstates. The expressions for
the general eigenenergies are rather large but we can provide
here the first order in the interactions U in the strong coupling
limit (g ≫ 𝛾a, 𝛾b)

E(2)0 = 𝜔a + 𝜔b +
g2

2R2
U (50a)

E(2)± = 𝜔a + 𝜔b ± 2R +
2g2 + (𝜔a − 𝜔b)[(𝜔a − 𝜔b) ∓ 2R]

8R2
U (50b)

with R =
√
g2 + (𝜔a − 𝜔b)2∕4 the normal mode splitting typical

of strong coupling. In this limit, E(1)± = (𝜔a + 𝜔b)∕2 ± R. The CB
lines are positioned, therefore, according to the conditions for
two-photon excitation by the laser: 𝜔L = Re{E(2)− }∕2, Re{E(2)0 }∕2,
Re{E(2)+ }∕2, in increasing order, as they appear in Figure 11a,
marked with solid red lines in Figure 11b. The upper CB line, cor-
responding to E(2)+ , is the faintest one in the cavity emission due
to the fact that it has the most excitonic component. It is mono-
tonically blueshifted with increasingU and becomes linear in the
density plot as E(2)+ → U. The other two levels converge to those

in the Jaynes–Cummings model in such case: E(2)− → −
√
2g and

E(2)0 →
√
2g.

7.2. Unconventional Statistics

We now shift to the unconventional features in polariton block-
ade. Superbunching, or UB, is found by minimization of ⟨na⟩
and, therefore, also occurs for the same condition as the Jaynes–
Cummings model Δb = 𝜒g cos𝜙. Interestingly, the maximum
superbunching is found at one of the crossings of UB and CB.
Now turning to the more interesting unconventional anti-

bunching (UA) features, they are found, in the polariton case as
well, from the minimization of g(2)a . Since the equations are quite
bulky, only the case of cavity excitation (Ωb = 0) is included here.
The UA curve is given by the solution of

Δa = −Δb −
4g2Δb

𝛾2b + 4Δ2
b

+
2g2(U + 2Δb)

𝛾2b + (U + 2Δb)2
(51)

and the conditions for perfect antibunching come from solving
the equation

𝛾b

[
1 + 4g2

(
− 1
𝛾2b + 4Δ2

b

+ 1
𝛾2b + (U + 2Δb)2

)]
= −𝛾a (52)

and subsequently imposing that every parameter must be real
(or the more restrictive case: real and positive) that lead to addi-
tional restrictions.
As already noted, the polariton case adds a third CA line as

compared to its Jaynes–Cummings counterpart. The correspon-
dence between both cases is still clear, but this is largely thanks
to the large interaction strength chosen in Figure 11, namely,

Figure 12. Effects on the polaritonic photon statistics. Same as Figure 11
but for a) nonzero exciton-driving and b) observed through the direct exci-
tonic emission g(2)

b
. In the latter case, all the unconventional features have

disappeared. The bottom row identifies the features through the struc-
ture of conventional and unconventional lines. Parameters: 𝛾a = 0.1 g,
𝛾b = 0.01 g, 𝜒 = 0, and U = 10 𝛾a.

U∕𝛾a = 10. This choice will allow us to survey quickly the polari-
tonic phenomenology based on the more thoroughly discussed
Jaynes–Cummings one. Figure 12, for instance, shows the po-
laritonic counterpart of Figure 8 on its left panel but for one case
of mixed-pumping only, highlighting the considerable reshaping
of the structure and the importance of controlling, or at least
knowing, the ratio of exciton and photon driving. The right panel
of Figure 12 provides g(2)b , which, if compared to Figure 11, shows
that the main result is to remove all the unconventional features
and retain only the conventional ones. There are also fewer peaks
in the excitonic emission, producing a smoother background.
Another dramatic feature of the excitonic correlations, which is
apparent from Equation (49), is that it is independent from the
ratio 𝜒 of driving, that is, the same result is obtained if driving
the cavity alone, the exciton alone, or a mixture of both, in stark
contrast with the cavity correlations (cf. Figures 11a and 12a
where the only difference is that half the excitation drives the
2LS in the second case rather than going fully to the cavity in the
first case). This could be of tremendous value for spectroscopic
characterization of such systems since it is typically difficult to
know the exact type of pumping, while experimental evidence
shows that both fields are indeed being driven under coherent
excitation.[129] When measuring the excitonic correlations, there
is no dependence from the particular type of coupling of the
laser to the system. On the other hand, excitonic emission is
much less straightforward of access. Also worthy of mention is
that the crossing of the UA and CA lines already highlighted
for the Jaynes–Cummings system as providing a high-quality
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Figure 13. Polariton blockade. a) Same as Figure 11 but for an experimen-
tally realistic weak value of U∕𝛾a = 0.1, showing how the UB and CA lines
merge into the characteristic “polariton blockade” dispersive shape shown
in red in panel (b) along the cut (dashed line) 𝜔a = 5g around the lower
polariton branch (𝜔LP ≈ −0.2g). Also shown are similar dispersive shapes
for other values of U∕𝛾a (black and blue curves).

and special type of antibunching also occurs there but without
requiring both types of mixing.[109] Note, finally, that one could
similarly consider the lower and upper polariton statistics, but
they are even less featureless, with correlations of the signal that
merely follow the polariton branches.[109]

Finally, in Figure 13, we focus on the effect of the interaction
strength and how to optimize the observation of antibunching.
We have already emphasized that for clarity of the connection
between the Jaynes–Cummings and the polariton case, we have
considered a value of U∕𝛾a substantially in excess even of the
most generous estimates found in the literature.[130] While it is
not excluded that such a regime will be available in the near fu-
ture, it is naturally more relevant to turn to the most common ex-
perimental configuration whereU∕𝛾a ≪ 1. We show such a case
in Figure 13a, where U∕𝛾a = 0.1. We see how, as a result, the CB
and CA lines of the positively detuned case collapse one onto the
other. The UA line previously in between has, in the process, dis-
appeared. The CA and CB however do not cancel each other but
merge into a characteristic dispersive-like shape, shown in Fig-
ure 13b, the observation of which, predicted over a decade ago,[27]

has been a long-awaited result for polaritons and has indeed been
just recently reported from two independent groups.[38,39] While
this shape has been regarded as an intrinsic and fundamental
profile of polariton blockade, our wider picture shows how it
arises instead from different features brought to close proxim-
ity by the weak interactions. The difficulty in reporting polariton

Figure 14. Effect of dephasing on conventional and unconventional statis-
tics, illustrated with polaritons, but all systems behave similarly: uncon-
ventional features are fragile to dephasing as compared to conventional
ones which are robust against it, as shown in two complementary ways
for a) all resonances and b) as a function of dephasing for the UA &
CA cases selected in (a). Conventional antibunching and remains essen-
tially unaffected by dephasing rates that bring the unconventional one into
bunching. Parameters: 𝜔a = −3g, 𝛾a = 0.1g, 𝛾𝜎 = 0.01g, and U = g.

blockade lies in the weak value of antibunching, which is largely
due to the lack of knowledge of the full picture of photon corre-
lations that we have now established. The current work indeed
opens up the possibility to optimize antibunching over the full
parameter space, and may be used to find parameters that would
yield better antibunching for a particular set of experimental pa-
rameters, for instance by considering the intersection of UA and
CA lines.[109]

8. Dephasing

Conventional and unconventional statistics also differ in a fun-
damental way in their response to dephasing, which is a typi-
cal complication found particularly in the solid state. The sim-
plest way to account for such an effect is to include to the
master equation a term in the Lindblad form (𝛾𝜙∕2)𝜎†𝜎𝜌 which
describes pure dephasing at a rate 𝛾𝜙.

[131] Either from exact ana-
lytical results that can be obtained in some cases, such as for the
two-level system,[132] or from numerical simulations, it happens
that, as a rule, unconventional features are fragile to dephasing,
in the sense that resonances producing either bunching or an-
tibunching, but most particularly those of strong antibunching
that cancel exactly to first-order in the driving, are quickly spoiled
by small values of dephasing. In contrast, conventional features
are robust and the loss of antibunching becomes significant only
when pure dephasing is a sizable fraction of radiative lifetimes.
This is shown in Figure 14 for the case of polaritons, but all other
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platforms behave similarly. Figure 14a shows how the sharp res-
onances of UA and UB, that are theoretically zero and infinite re-
spectively in the limit of vanishing driving, are basically washed
away with a 10% dephasing rate only, in contrast to the CA reso-
nance that remains essentially unaffected even when 𝛾𝜙 ≈ 𝛾𝜎 , as
shown explicitly in Figure 14b where the UA and CA evolution
is plotted for the full range of 𝛾𝜙. Note that the effect is so dra-
matic that the antibunching even turns to bunching in the un-
conventional case while it is still well below 0.1, so still an excel-
lent value of antibunching, when 𝛾𝜙 = 10𝛾𝜎 in the conventional
case. This qualitative difference between the two cases is rooted
in their respective mechanisms: as an interference effect, uncon-
ventional statistics are particularly sensitive to dephasing, since
the slightest perturbation to the phase spoils destructive inter-
ferences. In contrast, conventional statistics follows from block-
ades or resonances with the level structure, which gets merely
broadened by dephasing, and therefore still offering the same
average conditions for the resonances. In fact, until dephasing
alters the character of light–matter interactions, which happens
when it gets very large through quenching or breaking correlators
to yield rate equations instead of a coherent coupling, its effect
on conventional antibunching is essentially negligible. Finally,
although most resonances damp out with dephasing, note that
one appears thanks to it (as seen on the right in Figure 14a), due
to purely excitonic eigenstates acquiring a photonic component
through dephasing and becoming bright.[109]

9. Time-Dependence

So far, we have dealt exclusively with time-independent configu-
rations and zero-delay correlators (𝜏 = 0). A feature in the time-
dependent photon correlations has been observed since the re-
vival of the unconventional mechanism by Liew and Savona[32]

and appears to be deeply connected to unconventional blockade:
strong and rapid oscillations in g(2)(𝜏). This came as a detrimental
counterpart of the very small value at 𝜏 = 0, since in the absence
of a high time-precision, the averaging reduces the antibunch-
ing. Such oscillations are shown in Figure 15c in light green
where they are contrasted with the conventional antibunching,
dark green, that is far from being so strongly antibunched (log-
scale inset) but is also much smoother. Oscillations are not, in
fact, intrinsic to the mechanism, which can dispose of them.[87]

Although indeed related to unconventional antibunching, they
are an indirect consequence rather than a necessary condition,
being simply the result of a detuning between the homodyn-
ing field and the mode emitting the light, whose interference
produces the unconventional statistics: the superposition of two
waves with mismatched frequencies exhibits a beating, which
yields these oscillations. One can thus expect to find them in all
platforms, both for antibunching and bunching, as shown in Fig-
ure 15. In the self-homodyning version, where the system itself
provides the coherent field to interfere with the quantum part of
the signal in a way that optimizes the correlations, such a detun-
ing can be simply the level-splitting from strong-coupling. This
was the case in the original proposal,[32] where oscillations are
Rabi oscillations. In all cases, the suppression of oscillations can
be achieved by getting rid of such a detuning. When the detun-
ing comes from level-splitting, it may then seem unavoidable,

Figure 15. Time-dependence of two-photon correlations in the conven-
tional and unconventional scenarios, with a 2LS and anharmonic oscillator
(left column) and polaritons (right column), for both antibunching (mid-
dle row) and bunching (bottom row). The cases shown are those selected
at the various points identified in the top-row for the resonances of the 2LS
(black) and anharmonic oscillator (blue), labeling g(2)s the homodyning
case. a) Antibunching with and without homodyning and b) bunching (di-
verging to first-order in the driving) display no oscillations as compared to
c) antibunching with polaritons in UA and CA, with strong oscillations as
UA occurs with detuning between the driving laser and the emittingmode.
Although likely to happen, this is not a per se feature of unconventional
statistics. d) For bunching, oscillations are actuallymore prominent for the
conventional mechanism. e) Plateaus around 𝜏 = 0 (arrows) in frequency-
filtered two-photon statistics from homodyning (g(2)s ) or self-homodyning
(g(2)). The cases shown are for the 2LS (black), the anharmonic oscillator
(blue), and polaritons (green). Parameters:Δ𝜎 = 0 and Γ∕𝛾𝜎 = 0.5 for the
2LS; U∕𝛾a = 1, Δ𝜎∕𝛾a = Δ−, and Γ∕𝛾a = 0.5 for the anharmonic system;
𝛾a∕g = 0.1, 𝛾b∕g = 0.01, U∕g = 1, 𝜔a∕g = −3, and 𝜔L∕g = 0.67 for polari-
tons, with greatly reduced oscillations.

but in this case as well one can get rid of it through dissipative
coupling,[87] that is, a non-coherent, non-reversible type of cou-
pling that does not dress the system. One still needs to bring an
interfering mode, but since this can be done at resonance, this is
an insightful way to free the strong antibunching of unconven-
tional blockade from detuning oscillations.[87] Figure 15 shows
g(2)(𝜏) for, on the one hand (left column), the anharmonic oscil-
lator (in blue) and the two-level system (in black) as well as, on
the other hand (right column), polaritons (in green, the Jaynes–
Cummings system being essentially similar). The case of homo-
dyning is still labeled s, as previously, but since the various plat-
forms are now brought together, wemaintain the emitter label as
a subscript. Namely, for the two-level system, g(2)𝜎 is Equation (30)
with  = 0, while g(2)𝜎s is the same equation but with 2 and 𝜙2
given by Equation (31) with N = 2. For the anharmonic oscilla-
tor, g(2)as is Equation (41) with Δb = Δ− and correcting field 2,1

and 𝜙2,1 given by Equation (42), while g
(2)
a is the same but with no
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homodyning, that is, = 0. The polariton case g(2)a,pol, on the right-
column, is given by Equation (49a). The time-dynamics for all
these cases is shown in Figure 15a–d. These are lots of cases but
that precisely display the same overall behaviour. Namely, when
there is only one resonant frequency and the condition for an-
tibunching and bunching can be found at zero (or almost zero)
detuning with the laser (two-level system and anharmonic sin-
gle mode), g(2)(𝜏) does not oscillate. For the anharmonic mode,
where detuning with the laser is not exactly zero (tending to zero
as the nonlinearity increases), still some undulation is noticeable
(Figure 15a in light blue solid line). On the other hand, the polari-
ton scenario, where there are more eigenfrequencies involved, is
more complex and varied. In the case where the laser is hitting a
polariton branch, such as for CA, only that frequency is selected
and no strong oscillations are present (dark green lines in Fig-
ure 15c). However, when the laser is completely out of resonance
with the level structure, as is the case for UA (Figure 15c, light-
green) andUB (Figure 15d, light-green), or at a resonance that in-
volves more than one photon and levels, such as CB (where the
laser is hitting a second-order two-photon resonance while not
being far from to the first order one-photon resonances), oscilla-
tions appear more clearly (Figure 15d, dark green). In summary,
oscillations have a common origin in both the conventional and
unconventional scenario (mixing of different frequencies) with
respective configurations being more (U) or less (C) prone to ex-
hibit them.
Another, more subtle and less prominently featured character-

istics found in time-dependent photon correlations is a plateau
of antibunching, with a flat g(2)(𝜏) that is produced around 𝜏 = 0.
Note that if g(2)(𝜏) would be exactly zero over some finite interval,
this would imply a time-gap in which no more than a single pho-
ton could ever be found, which realizes a perfect single photon
source, as opposed to conventional typeswhichmerely reduce the
probability of such occurrences. Such plateaus, however, result
from several derivatives cancelling, but not all, since the func-
tions are analytic, and g(2) is never strictly zero except at 𝜏 = 0
and in the limit of vanishing driving. Since g(2) is a tricky[133,134]

measure of the single-photon character, the plateau of uncon-
ventional statistics is no guarantee of a qualitative change in
single-photon emission, but it is the closest approximation so far
to the ideal time-gapped scenario and its properties remain to
be investigated. Its ubiquity throughout platforms is illustrated
in Figure 15e where it is shown for the 2LS, g(2)

𝜎s,Γ, the anhar-

monic oscillatorg(2)
𝜎a,Γ, and polaritons g

(2)
a . In the two former cases,

the plateau is observed when frequency-filtering the signal in a
frequency-window of width Γ.[49,135] Although this plateau has
been highlighted only recently,[49] it can with hindsight be recog-
nized in previous works.[46] One can find it in higher-order corre-
lators as well, for example, as a square-plateau in g(3)(𝜏1, 𝜏2), but
discussing this further here would bring us too far astray.

10. Discussion

We have now covered various aspects of the photon correlations
from several coherently driven systems. At the heart of our de-
scription is the decomposition of the correlators into various
terms that contribute to different orders in the driving. This al-

lows to identify the different mechanisms, which in agreement
with the literature, can be termed conventional and unconven-
tional. This also allows us to tune and optimize them. The skele-
ton of the structures can be found in closed-form to lowest order
in the driving, which leads to exact zeros for antibunching and
divergences for superbunching. Finite pumping merely distorts
and damps out the corresponding resonances, that however pro-
vide the correct physical picture. The exact nature of the quan-
tum states that are produced in this way remains to be fully clar-
ified. In particular, the Gaussian-state approximation discussed
in the literature holds to lower orders in the driving for the lead-
ing correlation functions only. For instance, for the case of the
laser-corrected two-level system (Table 1), the squeezed-coherent
Gaussian description holds up to the second-order in the driving
for the population and to the first-order in the driving for g(2). De-
viations occur for these observables to higher-orders in the driv-
ing, while higher-order correlation functions already differ to the
lowest order in the driving. Such deviations seem to arise from
the non-Gaussian nature of the quantum fluctuations in these
highly non-linear systems. This remains to be investigated.
Such a general picture can nevertheless explain under a

unified mechanism a wealth of observations that could other-
wise appear to be peculiarities that are specific to a particular
configuration. To take one recent example from a group that has
been leading in the development and applications of the type of
homodyning and self-homodyning discussed above, in ref. [101],
Trivedi et al. studied the generalization of the Jaynes–Cummings
system to N emitters: the so-called Tavis–Cummings Hamilto-
nian. Here, it is found that driving resonantly the eigenstates[136]

produces conventional antibunching, flanked by unconventional
antibunching for laser frequencies detuned from the one- and
two-photon resonances. This is the counterpart of the situation
of Figures 7d (resonance) and 7e (detuning), both also shown
in Figure 7a, where increasing N has the effect of bosonizing
the interacting (matter-like) part of the system or decreasing
the effective nonlinearity, similarly to decreasing g for N = 1.
Interestingly, it is reported that while for the case of resonance,
antibunching is spoiled with an increasing number of emit-
ters N, in presence of a detuning, one of the antibunching peaks
is, on the opposite, enhanced with increasing N. This apparently
puzzling behavior is easily understood once the conventional
and unconventional nature of the respective antibunching lines
are recognized. In the resonant case, antibunching is always
conventional, and as such it is reduced by the bosonization of
the system due to its increasing number of emitters,[137] or by
reducing the coupling. Since both weaken the nonlinearity in
the level structure, this destroys the conventional blockade that
is based on it. With detuning, on the other hand, one finds not
only conventional but also unconventional antibunching (cf. Fig-
ure 7b). Their CA is also reduced with increasing N, as reported,
but their UA, however, increases, which can be expected since it
is due to an self-homodyning interference between the coherent
and incoherent parts of the emission at the two-photon level,
as explained above, and this does not suffer from a reduced
nonlinearity (or increasing N). It can in fact be also optimized
(i.e., reduced) like all types of UA and as a result, should even
reach g(2) = 0 to lowest order for a proper choice of the detuning,
that will depend on N in a way that remains to be computed.
Since we have shown, however, that the interference nature of
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UAmakes it sensitive to dephasing, and that detuning[132] results
in fast oscillations in autocorrelation times, with a narrowing
plateau of antibunching, one can also expect this antibunching
to be particularly fragile and difficult to resolve when including a
realistic model for its detection. This is consistent with the find-
ing of ref. [101], that inhomogeneous broadening significantly
reduces UA. Finally, they also find in both detuned and resonant
cases the unconventional bunching, as the large bunching
central peak that is a typical feature of the general mechanism
(cf. Figure 7). This is therefore the super-chaotic noise due to
self-homodyning stripping down the emission to its mere fluctu-
ations. As such, the interpretation in terms of two-photon bound
states that is offered in ref. [101] and in other works[10,52] should
be further analyzed and quantified. Possibly the emission in UB
is less efficient for multiphoton physics as compared to leapfrog
emission,[128] due to the lack of a suppression mechanism for
higher photon-number processes, and despite the large values of
the correlation functions that they produce. This analysis could
similarly be extended to other many-body photonic platforms,
such as coupled-resonator arrays (see refs. [138–140] for reviews).

11. Summary and Conclusions

We have connected a hitherto disparate and voluminous phe-
nomenology of photon statistics in the light emitted by a variety
of optical systems into a unified picture that identifies two classes
of conventional and unconventional features, covering both the
cases of antibunching and bunching, which leads us to a classifi-
cation of CA,UA, CB, andUB.One class (conventional), linked to
real states repulsion, occurs at all orders and for all photon num-
bers while the other (unconventional) occurs for a given photon-
number with no a priori underlying level structure. To lowest or-
der in the driving, the dynamical response can be described by in-
terferences between a squeezed component and a coherent com-
ponent, and thus, in this picture, one can understand the photon
statistics emitted by many optical systems as simply arising from
the particular way each implementation finds to produce some
squeezing on the one hand and some coherent field on the other
hand, and interfere them during its emission. To lowest order in
the driving, the antibunching is exactly zero and superbunching
becomes infinite for the unconventional mechanism. In agree-
ment with the early literature, which foresaw the effect, we call
this phenomenon “self-homodyning.” With this understanding,
one can bring considerable tailoring of photon correlations by
modifying the relative importance of coherence versus squeez-
ing, which is conveniently achieved by superimposing a fraction
of the driving laser to the output of the system (“homodyning”).
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Zhang, E. Hu, A. Ĭmamoḡlu, Science 2000, 290, 2282.
[9] K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, H. Kimble,

Nature 2005, 436, 87.
[10] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuck̆ovíc,

Nature Phys. 2008, 4, 859.
[11] B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, H. J. Kimble,

Science 2008, 319, 1062.
[12] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abduma-

likov Jr., M. Baur, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff, Phys.
Rev. Lett. 2011, 106, 243601.

[13] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado,
H. E. Türeci, A. A. Houck, Phys. Rev. Lett. 2011, 107, 053602.

[14] I. G. Kaplan, The Pauli Exclusion Principle: Origin, Verifications and
Applications, Wiley-Blackwell, Hoboken, NJ 2016.

[15] M. Massimi, Pauli’s Exclusion Principle: The Origin and Validation of
a Scientific Principle, Cambridge University Press, Cambridge 2005.

[16] D. V. Averin, K. K. Likharev, J. Low Temp. Phys. 1986, 62, 345.
[17] T. A. Fulton, G. J. Dolan, Phys. Rev. Lett. 1987, 59, 109.
[18] M. A. Kastner, Phys. Today 1993, 46, 24.
[19] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G.

Walker, M. Saffman, Nature Phys. 2009, 5, 110.
[20] A. Gaëtan, Y.Miroshnychenko, T.Wilk, A. Chotia,M. Viteau, D. Com-

parat, P. Pillet, A. Browaeys, P. Grangier, Nature Phys. 2009, 5, 115.
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