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We map the Hilbert space of the quantum harmonic oscillator to the space of Glauber’s
nth-order intensity correlators, in effect showing “the correlations between the corre-
lators” for a random sampling of the quantum states. In particular, we show how the
popular g(2) function is correlated to the mean population and how a recurrent crite-
rion to identify single-particle states or emitters, namely, g(2) < 1/2, actually identifies
states with at most two particles on average. Our charting of the Hilbert space allows us
to capture its structure in a simpler and physically more intuitive way that can be used
to classify quantum sources by surveying which territory they can access. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4987023]

INTRODUCTION

The formalization of quantum mechanics in the early days of its construction1 led to the intro-
duction of the Hilbert space as the structure to accommodate and unify the rules of Heisenberg to
compute observables2 and the wavefunction of Schrödinger to describe the quantum states.3 To Ein-
stein’s reported observation that it would be enough to understand the electron, Dirac replied that “it
would be enough if students could understand the harmonic oscillator.”4 This object indeed ranks as
the foundation for much of our description of the world, not so much as the (quantum) mechanical
object itself, but as the single mode of a bosonic field. In this way, light can be described as a collection
of coupled harmonic oscillators, and such a basic notion as “coherence” was revolutionized in this
workframe, changing from “a monochromatic field” (a single oscillator is excited) to “uncorrelated
photons” (regardless of their origin).5 In a modern understanding, a single mode of well defined
frequency can be chaotic and a broadband, even a time-varying field, can be coherent. It is only
because of the observed correlation in the physical observables between thermal and/or chaotic fields
with broad linewidths that the identification of the two concepts came to be, which is still enduring
to this day. With technology and the rising of photonics, however, the family of quantum states of
the light field has been enlarged considerably with more examples to distinguish these two concepts
than to associate them. In quantum optical terms, coherence is nowadays described by the Glauber
correlators (we shall consider henceforth only a single bosonic mode a),

g(n) ⌘ ha†nani/ha†ain , (1)

where a is the annihilation operator (or “ladder operator”) that removes one quantum from the Fock
state |n↵ according to a|n↵=pn|n � 1

↵
. The Glauber correlators are normalized quantities obtained

from the ratio of observables,
G(n) ⌘ ha†nani . (2)
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As we will use the normalized form in our discussion, instead of g(1) which is unity, we will use as
a first-order variable the normalization itself, that is, the mean population of the oscillator (average
number of quanta),

n0 ⌘G(1) = ha†ai . (3)

These observables provide an essentially comprehensive description of the quantum state of a har-
monic oscillator, through its n-particle fluctuation properties. In this text, we only consider the states
and not their dynamics according to some Hamiltonian and/or Liouvillian equation of motion, so
that all the correlators are same-time correlators. In a dynamical context, g(1)(⌧)⌘ ha†(0)a(⌧)i/n0
becomes an important observable by itself (its decay time from unity is related to spectral coherence,
that is, its departure from a single line). The g(n) correlators describe collective fluctuations at sev-
eral orders, for instance, g(2) (the most widely used one) is related to the variance of the population
according to g(2) = 1 + (Var(n0)� n0)/n2

0. For Poisson fluctuations of the population, Var(n0) = n0 and
g(2) = 1. The underlying quantum state is the coherent state6 theorized by Sudarshan7 and Glauber.8

Sub-Poissonian fluctuations are characteristic of genuine quantum states of the field, i.e., with no
classical analogues, epitomized by the Fock state.9 Chaotic light, on the contrary, exhibits large fluc-
tuations, with g(2) = 2. The underlying quantum state is the thermal density matrix.8 These correlators
are also popularly known as the “nth-order quantum coherence functions.”

CHARTING THE HILBERT SPACE

All our discussion so far has been well-known introductory material to quantum mechanics
courses. In the following, we will study quantum states of the harmonic oscillator (that can be
thought of as the single mode of a cavity) that go beyond the well-known particular cases through
which we usually perceive the Hilbert space. The canonical basis for the space is provided by the
Fock states |n↵. While we will ultimately be concerned with the complete space H1 of the Harmonic
oscillator, it will be convenient to approach it through subspaces of at most N quanta,

HN =
8><>:

NX

k=0

↵k |k
↵

;
⇣
↵k 2C

⌘
^

⇣ NX

k=0

|↵k |2 = 1
⌘9>=>; . (4)

It is well known, since Pegg and Barnett’s attempts to define a phase operator,10 that working in a
truncated Hilbert space of arbitrarily high maximum particle-number N allows us to get access to
physical properties that become pathological in the infinite-dimensional space. We likewise consider
truncated spaces that can later be enlarged in a limiting process, in which case H1 ⌘

S1
N=0HN .

While Eq. (4) provides a comprehensive depiction of HN , it is a deceiving picture that keeps
hidden much of the structure of the space. This is this structure which we shall attempt to clarify in
the following through its visualization in terms of g(n) observables. The need for such an analysis is
motivated by the recent interest in exciting optical targets with the new sources of quantum light11,12

made available by the progress in quantum sources engineering.13 When driving a harmonic oscillator
with quantum light, one can bring the system to a state that falls outside the known particular cases,
even though a considerable zoology has already been established. Indeed, beyond the most famous
cases already presented (thermal and coherent), the literature describes a large family of quantum
states for the harmonic oscillators, with Gaussian states,14 predominantly squeezed states,15 but also
more exotic families, such as cat states, i.e., superposition of coherent states16 in various possible
combinations,17 two-photon coherent states,18 Fock-added coherent states,19 excited two-photon
coherent states20 and their generalization,21 binomial22 and negative binomial states,23 etc. The
quantum world being such a bizarre place, even such a simple operation as subtracting a state to
itself has inspired profuse discussions.24 In most cases, the classifications follow from a particular
scheme that allows one to engineer the corresponding states. As such, they do not provide a picture
of the Hilbert space that is both simple and comprehensive and that would be practical to survey
which regions of the Hilbert space have already been covered, are the easiest to access, which are
its boundaries, if any, and what areas remain to be explored. This is such a picture that we provide
based on the particles’ joint-correlation properties.
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A first simplification following from our approach that relies on observables—Eqs. (1)–(3)—that
are sensitive to diagonal elements Pk ⌘ |↵k |2 only, is to lift the distinction between pure states, i.e.,
those of the form of Eq. (4) that can be written with a wavefunction, and mixed states, i.e., statistical
superpositions of these that are consequently of the following type:

⇢=
NX

k=0

Pk |k
↵⌦

k | +
NX

k,l=0
k,l

Pk,l |k
↵⌦

l | , (5)

with Pk,l 2C in general but Pk 2R (note that we write Pk instead of Pk ,k). The mixed case is a
generalization which reduces to the pure one when Pk,l = ↵k↵⇤l , and the second sum in Eq. (5) is
redundant. A maximally mixed state on the other hand cancels altogether the second sum. The
arbitrary case interpolates between these two situations corresponding to the degree of purity or
coherence (depending on terminology). We will leave it to context or to cases of greater generality
to decide which case is meant or useful. For instance, ↵n = exp(�|↵ |2/2)↵n/

p
n! can be understood

as both the coherent state and the random-phase coherent state25 (with all off-diagonal elements as
zero). We will likewise use the notation ↵n =

p
(1 � ✓)✓n (for 0  ✓  1) for both the thermal state,

which has null off-diagonal elements, and the pure state version that is actually also of interest, as
the eigenstate of the Susskind-Glogower phase operator (aa†)�1/2

a,26 in which case it is known as
the “coherent phase state”27 for its analogies with the coherent state, eigenstate of a; cf. Ref. 28 for a
nice review. In any case, the important information for our exploration of the Hilbert space through
particle fluctuations resides in the first sum of Eq. (5).

In HN where the total number of excitations is truncated, PN +m = 0 for m � 1 in Eq. (5); therefore,
computing correlators (2) on states (5) yields the following sequence:

1=
NX

n=0

Pn , (6a)

n0 =

NX

n=0

nPn , (6b)

G(2) =

NX

n=0

n(n � 1)Pn , (6c)

...

G(N) =

NX

n=0

n(n � 1) · · · (n � N + 1)Pn . (6d)

In this case, there is a bijection M between the allowed G(n) correlators and the states uniquely
defined through the first sum in Eq. (5). This can be written in a matrix form

~G=M~P (7)

between the vectors of (N + 1) elements ~P= (P0, . . . , PN )T and ~G= (1, n0, G(2), . . . , G(N))T with

M=
*......
,

1 1 1 . . . 1 1
0 1 2 . . . N � 1 N
0 0 2 . . . (N � 2)(N � 1) N(N � 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 N(N � 1) · · · 1

+//////
-

, (8)

which, being upper-triangular, allows us to solve Eq. (7) by backward Gaussian substitution

PN�k =
1

(N � k)N�k

8><>:G(N�k) �
NX

k0=N�k+1

(N � k)k0Pk0
9>=>; , (9)
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where (n)k =
Qk�1

p=0(n� p)= hn|a† kak |ni. This result can be expressed in an explicit recursive form by
developing all the coefficients,

Pi =

NX

j�i

(�1)i+j G(j)

i!(j � i)!
, (10)

for 0  i N . This is the inverse relation of Eq. (6).
The expression holds true for any N and in a limiting process gets extended to the case N!1.

This relation can also be obtained through the method of generating functions.29 Now that this
relationship between Pk probabilities and G(n) correlators is settled, we are ready to approach the
Hilbert space through the g(n) observables. Namely, we consider how a distribution of states from
HN is mapped in the space charted by g(n). We will call the latter space GN . Given that 0  Pn  1 for
all n, and their sum being unity by normalization, one can foresee constraints for the correlators, only
at the level of “correlations between the correlators,” e.g., are they all large or small together or is it
on the opposite possible to have arbitrarily high values of g(3) for vanishing g(2)? And if so, are such
states in “equal numbers” than those of the opposite trend? We answer these questions by providing
the density of states in the correlator space GN . Namely, we want to know how a distribution of points
in HN is mapped into GN .

Since the Fock state basis Eq. (4) is intuitive, it is natural to consider a uniform distribution
in HN as a fair representation of all the quantum states. For instance, the Hilbert space H2 is a
2D triangle in the 3D space (P0, P1, P2) (see Fig. 1) and all the quantum states of at most two
particles can be conveniently represented by the uniform distribution over this geometry, namely, a
constant distribution of value 2/

p
3 (the inverse area of an equilateral triangle of side

p
2). If a point

is sampled randomly from this space, corresponding to choosing one of the quantum states of the
form ↵0 |0

↵
+↵1 |1

↵
+↵2 |2

↵
with the same probability as any other, we then ask what is the probability

that this state will have a given population and second-order correlation (all higher orders are zero
since such states have at most two particles). From Eqs. (6), it is easy to see that the population lies
between 0 and 2 and also that 0 G(2)  2, both maximised when P2 = 1 and all other Pn = 0. It is
not difficult, though less immediate, to show that g(2) is positive but unbounded (the possibility for
two particles to exhibit arbitrarily large superbunching is also known from the dynamics of bosonic
cascades30). Mathematically, this means that n0 and G(2) can vary independently between 0 and 2.
To know if there is some degree of correlation between them, we consider the distribution of states
in the (n0, g(2)) space.

FIG. 1. The two-particle Hilbert space H2 in the canonical Fock basis Pk of probabilities for the state |k↵ is mapped on an
equilateral triangle (yellow). A uniform sampling in this triangular space is a good representation of all the possible quantum
states with at most two particles. The blue surface shows the states of constant g(2) (namely, g(2) = 1.3) so that its intersection
with the yellow triangle, shown as the red line, captures all the normalized physical quantum states with the corresponding
g(2). The “measure” (here length) of this line correspond to their density in the space.
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The quantum states with a given n0 are found as the intersection between the triangle of nor-
malized states in (P0, P1, P2) with the plane of equation P1 + 2P2 n0 = 0. Similarly, the states
with a given g(2) are the intersection of the same supporting triangle with the ellipsoid (P1 + 2P2)2

2P2/g(2) = 0, shown as the blue surface in Fig. 1. The constant g(2) states in H2 are consequently
those identified by the red line in Fig. 1. This turns the question of the density of states in GN into
a problem of measuring surfaces in hyperspaces: the measure, i.e., total area or volume related to
a certain manifold, has the same value regardless of which parametrization (or metric) is chosen.
This is tackled in differential geometry with the first fundamental form F that provides the trajectory
in one space that is parametrically defined in the other. The regions that are thus connected are, in
general, hypersurfaces. The relation reads

Fk,k0 = @G(k)~P · @G(k0)~P, (11)

where 1  k, k 0 N and · is the scalar product between the @~P vectors. As the transformation Eq. (7)
is linear, the elements of F are constant, namely, they are given by Fk,k0 =

P
ik,k0 (�1)k+k0 � ⇥i!2(k

� i)!(k 0 � i)!
⇤
. An element of (hyper)surface in HN is related to the corresponding element in GN by

PGdn0 · · · dG(N) = (
p
|F|/AN )dP0 · · · dPN with PG as the density of probability, AN as the volume of

the Hilbert space HN that, being a simplex of dimension N + 1, reads

AN =

p
N + 1
N!

, (12)

and the value of |F| can be computed from Eq. (11) and is found in terms of the superfactorial
sf(N)=

QN
i=0 i! as

p
|F| =

p
N + 1

sf(N)
. (13)

While the computation is conveniently performed with ~G, we are eventually interested in the
space of normalized correlators g(n), that we will call gN . A summary of the spaces involved and
the notations to identify them is given in Table I. There is another bijection N from GN to gN that
simply involves powers of n0 as (n0, G(2), . . . , G(N))= (n0, n2

0g(2), . . . , nN
0 g(N)). The Jacobian for this

transformation from GN to gN reads

J =
�����
@G(i)

@g(j)

�����=
������������

1 0 0 0 . . . 0
2n0g(2) n2

0 0 0 . . . 0
3n2

0g(3) 0 n3
0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
NnN�1

0 g(N) 0 0 0 . . . nN
0

������������
=

NY

p=2

np
0 = n(N2+N�2)/2

0 . (14)

TABLE I. Summary of notations for the various spaces introduced, and
their corresponding joint densities of probability P . HN is the Hilbert space
truncated to N 2N particles in the Fock basis. GN is the corresponding
space in the basis of unnormalized correlators G(N ) and gN in the space
of Glauber correlators g(n). The densities of probability are such that for a
uniform sampling, AN is the volume of the Hilbert space HN , F is the first
fundamental form, and J is the Jacobian of the transformation between the
correlators and their normalized form. Their expressions are given in Eqs.
(12) and (13). ⇥ is nonzero only if there is a physical state that provides the
joint variables of the P functions.

Subspace Probability

HN P (P0, P1, . . . , PN )= (1/AN )⇥
�
HN

�

GN PG(n0, G(2), . . . , G(N))= (
p
|F |/AN )⇥

�
GN

�

gN Pg(n0, g(2), . . . , g(N))= (J
p
|F |/AN )⇥

⇣
gN

⌘



062109-6 Zubizarreta Casalengua et al. J. Math. Phys. 58, 062109 (2017)

This finally brings us to one of the main quantities of this text: the joint density of probability
Pg

⇣
n0, g(2), . . . , g(N)

⌘
. Specifically, the probability that a state randomly picked from HN has cor-

responding correlators n0, . . . , g(N ) in an infinitesimal hypervolume dn0 · · · dg(N) is Pgdn0 · · · dg(N).
Bringing all the results above together, this density of probability is found as

Pg

⇣
n0, g(2), . . . , g(N)

⌘
=

n(N2+N�2)/2
0

sf(N � 1)
⇥(gN ) , (15)

where ⇥(gN )⌘ 1N �M (HN ) is the support for the image of HN through the bijection N �M , i.e., it
is 1 if there exists a state with joint-correlators n0, g(2), . . . , g(n) and is 0 otherwise. The subset
N �M (HN ) remains to be made explicit and its identification represents the core of the problem. It
is already notable, however, that for physical states, Pg is independent of all the correlators except
the population n0.

We now turn to particular cases to apply and illustrate these results. In each case, the following
procedure holds: a uniform distribution of states in the space HN leads to a corresponding distribution
in gN given by Eq. (15). The space gN itself is bounded when projected onto its n0 axis. The boundaries
are found from re-arranging the inequalities 0  Pi  1 with Pi given by Eq. (10) to read as inequalities
for the correlators instead. Marginal distributions can be obtained that provide the distribution of
quantum states in subspaces of interest [e.g., (n0, g(n))].

THE TWO-PARTICLE HILBERT SPACE H2

We consider first the simplest space distinct from that of the two-level system (H1 is the Hilbert
space of a qubit and its complete characterization is textbook material31). Namely, H2, the space
spanned by |0↵ (vacuum), |1↵, and |2↵, has dimension 3 and can be fully represented geometrically
in a 3D Euclidean space. We have already used this space to illustrate the nature of the Hilbert space
in the Pk and G(k ) bases in Fig. 1.

Equation (10) reads in this case

P0 = 1 � n0 +
n2

0g(2)

2
, (16a)

P1 = n0(1 � n0g(2)) , (16b)

P2 =
n2

0g(2)

2
, (16c)

with 0  Pk  1. The reverse relations are familiar from the definitions of the following observables:

P0 + P1 + P2 = 1 , (17a)

P1 + 2P2 = n0 , (17b)
2P2

(P1 + 2P2)2
= g(2) . (17c)

The corresponding joint density of probability Pg, i.e., yielding the probability of finding a state
with given (n0, g(2)) from a uniform sampling in the Hilbert space, is

Pg(n0, g(2))= n2
0 ⇥

⇣
g2

⌘
, (18)

where ⇥
⇣
g2

⌘
vanishes if

⇣
n0, g(2)

⌘
< g2. As already stated, there is no explicit dependency of Pg on

g(2) once in N �M (H2). Since ⇥(g2) is not 1 everywhere, there is, however, an implicit dependency
through g2’s geometry. This space is found from Eqs. (16) and can be easily visualized as it is
two-dimensional. The inequalities on Pk result in upper and lower boundaries for n0 and g(2),

g(2)  1
n0

, (19a)

g(2) � bn0c(2n0 � bn0c � 1)
n2

0

. (19b)
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The lower boundary for g(2), Eq. (19b), was already known12 and applies to all HN . There is also,
however, an upper boundary, Eq. (19a), that is specific to H2. Together, this constrains the states in
H2 to be confined in the area shown in Fig. 2. The color code there is that given by Eq. (18) and shows
that states uniformly distributed in H2 yield the largest density of probability in the edge (n0, g(2))
= (2, 1/2), that is, the point corresponding to |2↵, since there is only one state with this mean population
and states with similar populations also have a similar g(2). In contrast, there are many states with
mean population 1, but their range of g(2) is limited (between 0 and 1), the probability to find one
of them is thus intermediate. Finally, while there is also only one state with mean population zero
(vacuum), states with similar populations can have any positive g(2), hence there is a small probability
to find any such state. When disregarding the population, one finds that the antibunching with highest
probability is that of the Fock state |2↵, i.e., g(2) = 1/2, although another state will likely have been
drawn in its place. If it would be uncorrelated, it would most likely have mean population 1.

The boundaries in H2 can also be written as

n0 
1 �

p
1 � 2g(2)✓(1 � 2g(2))

g(2)
, (20)

where ✓(x) is the Heaviside function. Regarding the upper bound, for a given allowed population,
0  n0  2, g(2) cannot be larger than 1/n0. The lesser the population, the greater the maximum g(2)

can be. This is consistent with results on superbunching obtained from bosonic cascades30 that show
that large bunching, g(2)� 2, develop as the system gets close to vacuum. Even though the joint
probability takes a simple form, the geometry of the Hilbert space when charted by the correlators

FIG. 2. Charting of the Hilbert space H2 (up to two-particles). (a) Probability distribution Pg(n0, g(2)) of finding a quantum
state with the corresponding population and g(2) from a random sampling in H2 (uniform distribution on the triangle in Fig. 1).
The space exhibits both a lower and an upper boundary. (b) Distribution Pg(n0) after averaging over g(2) and (c) distribution
Pg(g(2)) after averaging over n0. The space is unbounded in g(2), so that arbitrarily high superbunching can be realized, which
requires vanishing populations.
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has thus a complex form. This echoes in the reduced probability distributions that have a simple
support, but complicated functional expressions. Both distributions, Pg(n0) and Pg(g(2)), are obtained
by integrating over the other observable. The first one provides the population distribution

Pg(n0)=
(

n0, if 0  n0  1,
2 � n0, if 1< n0  2 (21)

and the other one provides the g(2) distribution

Pg(g(2))=

8>>>>>><>>>>>>:

r
8
9

(1 �
p

1 � 2g(2) � g(2))
3
2

(g(2))3
, if 0  g(2)  1

2
,

1

3(g(2))3
, if g(2) >

1
2

.
(22)

Both distributions are piecewise functions and are shown in Figs. 2(b) and 2(c). A random sampling
in H2 is thus most likely to produce a state with one excitation if limiting to this observable and an
antibunching of 1/2 if limiting to this observable. Jointly, however, the most likely g(2) remains 1/2
but now for a population of 2. This does not mean, however, that |2↵ is most probable, only that states
close-by resemble it while states close-by, say, vacuum, are very different.

The states that lie on the boundaries of the Hilbert space (we will call them coin states) are a
superposition of two of the three basis’s Fock states,

r
1 � n0

2
|µ↵ +

r
n0

2
ei✓ |⌫↵ (23)

with 0  µ, ⌫  2 such that µ, ⌫. The |0↵–|1↵ superpositions lie on the x-axis, |0↵–|2↵ define the upper
boundary and |1↵–|2↵ define the lower boundary past n0 = 1. The n0 = 0 boundary is (set-topologically)
open, that is, the states can get asymptotically close to, but without touching, the boundary. Other
boundaries are closed since states (23) are part of H2. Note also that while H2 is bounded, g2 is not,
even though they are one-to-one connected.

THE THREE-PARTICLE HILBERT SPACE H3

The principle for H3 is the same as that for H2 but in a 4D space, since the space is enlarged
with a new observable: the three-particle fluctuations g(3). This makes its visualization trickier. The
results and their geometric interpretation are still valid, but instead of 2D surfaces one is now dealing
with hypersurfaces.

Equation (10) reads in this case

P0 = 1 � n0 +
n2

0g(2)

2
�

n3
0g(3)

6
, (24a)

P1 = n0 � n2
0g(2) +

n3
0g(3)

2
, (24b)

P2 =
n2

0g(2)

2
�

n3
0g(3)

2
, (24c)

P3 =
n3

0g(3)

6
. (24d)

One can check that if g(3) = 0 (P3 = 0), then the structure of H2 is recovered, as indeed H2 is a
subspace of H3. The distribution of states is found as

Pg(n0, g(2), g(3))=
n5

0

2
⇥

⇣
g3

⌘
, (25)

and as before, there is an explicit dependence only on the population, with an implicit dependence
on g(2) and g(3) from the fact that the states are constrained to g3. The boundaries for (n0, g(2), g(3))
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are complex. One can express them through the constrains on one variable set by the two others. This
yields, for g(2) as a function of n0 and g(3),

g(2)  n0g(3)

2
+

1
n0

, (26a)

g(2) �max *,n0g(3),
n0g(3)

3
+

2
n0
� 2

n2
0

+
- , (26b)

and, for g(3) as a function of n0 and g(2),

g(3) min *,
g(2)

n0
,

3g(2)

n0
� 6

n2
0

+
6

n3
0

+
- , (27a)

g(3) �max *,0,
2g(2)

n0
� 2

n2
0

+
- , (27b)

with 0  n0  3 in both cases and 0  g(2), g(3) in general. Observe from Eq. (26a) how the bounding
from 1/n0 allows g(2) to grow arbitrarily for vanishing populations. The equations apply for combi-
nations of (n0, g(3)) and (n0, g(2)) that are possible in the first place, in which case the boundary for
the third variable is as indicated and consist of sharp inequalities, meaning that the equality holds
for some cases. If the combinations are not possible, the equations as well may become impossible,
requiring, e.g., g(3) < 0. The conditions for valid combinations define the projected spaces (n0, g(N ))
and will be given later [cf. Eqs. (33)] as they apply for all N. Note that in H2, there is no such issue
as the projected space is also the full space.

The boundary set by g(2) and g(3) on n0 is the most complicated one, although it is only bounding
from above. It is given in terms of two auxiliary functions, f 1(g(2), g(3) and f 2(g(3)), defined in
Appendix A [cf. Eqs. (A1)–(A3)] and reads

0  n0 U(g(2), g(3)) (28)

with

U(g(2), g(3))⌘

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

f1(g(2), g(3)), if g(3)  2
9

and g(2) < f2
⇣
g(3)

⌘
,

g(2) �
q

(g(2))2 � 2g(3)

g(3)
, if g(3)  2

9
and g(2) � f2

⇣
g(3)

⌘
,

min[f1,
g(2)

g(3)
], if g(3) � 2

9
and g(2) <

q
2g(3) ,

g(2) �
q

(g(2))2 � 2g(3)

g(3)
, if g(3) � 2

9
and g(2) �

q
2g(3) .

(29)

The value 2/9 comes from g(3) of the Fock state |3↵.
These results are already difficult to visualize although still very near the ground state of the

oscillator. They are shown in Fig. 3 in the full H3 space, where a single-sheet boundary encloses
from above the space of allowed states up to three particles. In most practical situations, one is
interested in pairwise correlations, so we address H3 more systematically through its projections into
its subspaces. This is obtained for any combination of two variables by integrating over the third
one. The expressions are bulky and would bring little enlightenment, so we keep them separate in the
Appendix. In this way, we can find Pg(n0, g(2)) [Eq. (A4)] and, for the new subspace now accessible,
Pg(n0, g(3)) [Eq. (A5)]. The exact solutions have the form of piecewise polynomial functions of their
variables (cf. Appendix A). It is interesting to compare Pg(n0, g(2)) for H3 to that calculated for H2,
where it was providing the complete picture, while it is now averaged over g(3). The boundaries are
also realized by Coin states of the form of Eq. (23), this time with 0  µ, ⌫  3 (still with µ, ⌫). This
is true as well for the new projected spaces (n0, g(3)).

As seen in Fig. 3, the Hilbert space is bounded for the population but is not bounded when not
involving this parameter. This is due to intensity correlations of all orders being largely independent
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FIG. 3. Charting of the Hilbert space H3 (up to three-particles). (a) Density of probability distribution Pg(n0, g(3)) after
averaging over g(2) of finding a quantum state with the corresponding population and g(3) from a random sampling in H3
[uniform distribution in an hypervolume (not shown)]. The space exhibits both a lower and an upper boundary similar to H2.
(b) Distribution Pg(g(2), g(3)) after averaging over n0. This subspace is unbounded unlike those that involve the population. (c)
Distribution Pg(n0, g(2)) [cf. Fig. 2] after averaging over g(3). (d) Distribution Pg(g(2)), (e) Pg(g(3)), and (f) Pg(n0). The latter
distribution is of the Irwin-Hall type. (g) The complete distribution for H3 lives in a 3D space, shown here through its upper
boundary along with the three projections on 2D spaces.

from the population, thus allowing a normalizing factor to make the quantity vanish or diverge (in
contrast, G(n) are, like n0, all bounded). As a result, all pairs of (positive) values for (g(2), g(3)) are
possible. One can get antibunched states of two particles that exhibit super three-particle bunching,
and reciprocally superbunching at the two-particle level but three-particle antibunching, as well
as, more expectedly, joint two/three antibunching and superbunching, respectively. Making more
precise statements require us to be more specific on how the correlators reach their limits although
one can be quite general regarding vacuum. Table II shows the upper bound U for the population, cf.
Eqs. (28) and (29), in all the possible combinations for the limiting cases of g(2) and g(3). If at least
one correlator diverges, then the boundary tends to 0, meaning that the state is dominated by vacuum,
P0! 1. One can otherwise turn to the density of probability for this subspace that quantifies the
relative occurrence of all possible combinations. It reads

Pg(g(2), g(3))=
1

12

f
U(g(2), g(3))

g6
(30)

and is shown in Fig. 3(b).
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TABLE II. Limiting cases of the population upper bound U(g(2), g(3)) for
all the possible combination of vanishing and diverging g(2) and g(3). In the
bottom right cell, case (i) applies to (g(2))

2
> 2g(3) while case (ii) applies

to (g(2))
2
< 2g(3). All cases except g(2)! 0 and g(3)! 0 lead to vanishing

populations n0. Similar analyses could be undertaken for higher correlators.

U(g(2), g(3)) g(2)! 0 g(2)!1

g(3)! 0, 1 +
g(2)

2
� g(3)

6
1

g(2)
+

2g(3)

(g(2))3

g(3)!1 g(2)

g(3)

i
� 1

g(2)
+

2g(3)

(g(2))3

ii
� g(2)

g(3)

Integrating one step further, the probability distribution for n0 in H3 can be obtained from either
Eq. (A4) or (A5) by integrating over the extraneous variable, which yields

Pg(n0)=

8>>>>>>>><>>>>>>>>:

n2
0

2
, if 0  n0  1 ,

�1
2

⇣
2n2

0 � 6n0 + 3
⌘

, if 1< n0  2 ,
1
2

⇣
n2

0 � 6n0 + 9
⌘

, if 2 < n0  3

(31)

that is plotted in panel (f) of Fig. 3. In a similar way, one can obtain from Eq. (A4) the reduced
probability distribution for g(2) in H3, that is, another bulky expression [cf. Eq. (A6)] expressed in the
piecewise form with the distribution itself being, as in the other cases, not only continuous but also
everywhere differentiable. We could not find an analytical expression for Pg(g(3)) that is displayed in
panel (e).

All the density of probabilities for all subspaces are shown in Fig. 3. The density plots are also
shown as projections on their respective planes in the full 3D space. As one can see, the structure of
the Hilbert space is intricate.

THE N-PARTICLE HILBERT SPACE HN

Further analytical results are not convenient (we refer to the Appendix A as an illustration of how
the exact solutions quickly become cumbersome, already in H3). From the three-particle Hilbert space
to higher dimensional ones, there is also a qualitative step. The inequality system can be handled for
H3, in which case, polynomials of degree 3 are involved and their roots admit a closed form as given
by the Cardano–Tartaglia formula. For N � 4, this method is not applicable (even if there exists the
Ferrari formula for fourth degree polynomials). Nevertheless, some general characteristics can be
inferred without closed-form solutions.

In all cases, the distributions for the population Pg(n0) follow Irwin-Hall distributions (i.e., the
distribution for the sum of N independent random variables with a uniform distribution),

Pg(n0)=
1

2(N � 1)!

NX

k=0

(�1)k
 
N
k

!
(n0 � k)n�1sgn(n0 � k) . (32)

As a result, for large N, the distribution of population is normally distributed. This result is actually
trivial and follows directly from our uniform sampling of the native Hilbert space (in the canonical
Fock basis).

One can also generalize to all N, and thus also to the complete harmonic oscillator Hilbert space,
the boundaries of gN . They are constraining only when involving n0, in which case they are given by
(the proof is given in Appendix B)
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g(k)  (N � 1)!
(N � k)!

1

nk�1
0

, (33a)

g(k) � bn0c!
(bn0c � k)!nk

0

 
1 +

k(n0 � bn0c)
bn0c + 1 � k

!
. (33b)

These equations are the ones that need to be satisfied for N = 3 to provide physical upper boundaries
to Eqs. (26) and (27). As these are all sharp inequalities, one can easily find in this way the maximum
correlators for a given population.

Equations (33) show that by increasing N, the upper boundary for g(k ) wins territory in gN ,
unlike the lower boundary. This has the effect of retaining only a lower boundary in H1 that is shown
for g(2) in Fig. 4. The dashed lines show the boundaries of the successive HN spaces. The lower
boundary of Fig. 4 shows that there exist states such that n0 > 1 and g(2) < 1/2 (with superpositionsp

p|1↵ +
p

(1 � p)ei✓ |2↵ for 0 < p< 1 lying on the frontier). This is an important observation as it
invalidates a popular criterion in the literature that uses g(2) < 1/2 as a criterion for single-particle
states or, more frequently, single-photon emission.32–37 Our map of the Hilbert space shows that the
criterion g(2) < 1/2 is proper to identify states with less than two particles on average, not one at any
moment, as is the usual requirement for secure quantum protocols. The actual criterion for the latter
is g(2) = 0 and in the absence of an exact mathematical zero, one should turn to other criteria for
single photon sources.38

Note also that while any combination
⇣
g(k), g(k+n)

⌘
(for 1  n N � k) is allowed, this imposes

constrains on other correlators, starting with n0 regardless of the truncation N. In fact, if g(k ) = 0
for a particular k, it is easy to check that every higher order correlator as well as every coefficient
Pn with n � k is also necessarily zero. This effectively truncates the space. In the truncated space,
not all combinations of correlators are allowed even if they satisfy Eqs. (33). In H1, however, all
combinations are allowed, with open boundaries of the subspaces

⇣
g(k), g(k+n)

⌘
, when g(k), g(k+n)! 0

(that is, excluding 0). A special case is the limit n0! 0 (that has already been mentioned previously):
no state except vacuum, |0↵, has population n0 = 0. This result agrees with the fact that the density of
probability PN vanishes for n0 = 0. A counterpart of Table II could be worked out. As the details of how
the population vanishes might not be of importance, we only emphasize the following features that
echo the results discussed for H3: in HN , if one correlator at least diverges, then the state gets dominated
by vacuum: P0! 1. This can be seen from the fact that this correlator, say of order k, is bounded
from above in the (n0, g(k )) space, meaning that if g(k)!1, then n0! 0. If no correlator diverges,
including the case of all correlators vanishing, then the state can have a finite mean population.
This vanishing population for a diverging correlator is not, however, true in general in H1. There,
one can get diverging correlators for arbitrarily large populations. Consider, for instance, the case
(1� p)|0↵ + p|n↵, which, for any M as large as required, can be chosen to have population np = M and
g(2) = n(n 1)p/(np)2 = (n 1)/(np) which tends to 1/p for n large enough. Thus, g(2) = 1/p = n/M
can be made as large as we want, by considering n large enough (this is not possible if the space is

FIG. 4. Structure of the harmonic oscillator Hilbert space in the (n0, g(2)) subspace. There is a lower boundary but no upper
boundary in H1. The dashed lines show the upper boundaries that do exist for bunching in the truncated spaces HN . The
shaded region shows states with g(2) < 0.5 and n0 > 1.
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FIG. 5. Numerical distributions of states in the (n0, g(2)) subspace as obtained from Monte Carlo uniform sampling in HN
for 2 N  5. The cases N = 2 and 3 match with the analytical solutions presented above. Larger N weaken quantum features
such as the scars observed clearly in H3 that correspond to Coin states.

truncated). In turn, this makes p very small, showing that in this case again, the state is dominated by
vacuum, but the excited state is now so largely populated that, on average, the population does not
have to vanish. There are other ways to arrive to similar conclusions, showing in all that the structure
of the Hilbert space is a subtle one and that one should resist temptations of constraining the quantum
states from the behaviour of its Glauber correlators.

Finally, to gain an insight into higher-truncation spaces, we turn to numerical methods. This
also provides a way to check the analytical results. In Fig. 5, we show the results of Monte Carlo
sampling of states in the Hilbert spaces from H2 until H5 through their distribution in the (n0, g(2))
subspace. The numerical results reconstruct faithfully the distribution Pg(n0, g(2)) for the case N = 2
and N = 3 for which we have provided analytical solutions. It is also interesting that with increasing
N, one observes a blurring of the quantum features such as the scars made by the Coin states, clearly
visible in H3, faintly so in H4 and essentially gone in H5, as well as the kinky features of the lower
boundary. One witnesses in this way the typical fading of quantum correlations with a large number
of particles.

CONCLUSIONS

We have mapped the states of the Hilbert space of the harmonic oscillator in the space of Glauber
nth-order coherence function g(n) that captures the correlations of intensities at various orders in the
number of particles. This allows us to chart the Hilbert space in a simple and visually appealing
way, for instance, in the (n0, g(2)) subspace. We find that the Hilbert space has lower boundaries
when featuring the population, such that for populations larger than one, some values of g(n) become
impossible (no physical state can jointly provide them). There are no such restrictions when not
involving the population, so that arbitrary superbunching at some order can occur concurrently with
vanishing antibunching at some other order. For instance, one can find states with g(2)! 0, g(3)�
3!, g(4)! 0, and g(5)� 5! (the values for superbunching are defined with respect to the thermal
fluctuations) or indeed any combination, as long as the space has sufficiently high truncation. In the
truncated space, where N is finite, not all combinations are possible as they need to belong to gN
which has complicated upper boundaries. Said otherwise, given a sequence of correlators that satisfy
Eqs. (33), one can always produce corresponding states as long as higher order correlators g(l) for
l >N can also be chosen (typically, nonzero). If they are forced to be zero, they need to satisfy a more
constrained condition involving a U function [cf. (29) for the case N = 3]. It must be pointed out in
particular that the regions g(2) < 1/2 and n0 > 1 are populated, which invalidates a popular criterion
for single-particle states or emission whenever g(2) < 1/2. The suitable such criterion is the simpler
(and harder to achieve) g(2) = 0. What this criterion provides instead is a proof that the emission
has at most two particles on average. In summary, our results provide a new, simple, and practical
representation of the possible quantum states for the harmonic oscillator that should be of value, for
instance, to classify quantum sources by considering which areas of the newly charted space they can
reach.
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APPENDIX A: EXACT RESULTS

We list some of the exact and closed-form (but bulky) expressions for quantities discussed or
plotted in the main text. They are obtained from the methods explained therein.

These are the auxiliary functions introduced to define the boundaries for the population in the
Hilbert space H3 (f 0 is used in f 1),

f0(g(2), g(3))=
q

6(g(2))3(g(3))2 � 3(g(2))2(g(3))2 � 18g(2)(g(3))3 + 9(g(3))4 + 8(g(3))3 , (A1)

f1(g(2), g(3))=�
3
q
�(g(2))3 + f0(g(2), g(3)) + 3g(2)g(3) � 3(g(3))2

g(3)

+
18g(3) � 9(g(2))2

9g(3) 3
q
�(g(2))3 + f0(g(2), g(3)) + 3g(2)g(3) � 3(g(3))2

+
g(2)

g(3)
, (A2)

f2(g(3))=Re
*..
,

3
q
�8748(g(3))2 � 4860g(3) + 8748

⇣
g(3) � 2

9

⌘3/2p
g(3) + 54

18 3
p

2

� �324g(3) � 9

9 ⇥ 22/3 3
q
�8748(g(3))2 � 4860g(3) + 8748

⇣
g(3) � 2

9

⌘3/2p
g(3) + 54

+//
-

+
1
6

. (A3)

These are reduced density of probability distributions in H3,

Pg(n0, g(2))=

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

3n2
0 � 3n3

0 +
3
2

g(2)n4
0, if g(2) <

3
n0
� 3

n2
0

g(2)  1
n0

,

3n2
0 � 2n3

0 +
g(2)n4

0

2
, if g(2) <

3
n0
� 3

n2
0

and g(2) >
1
n0

,

g(2)n4
0

2
, if g(2) � 3

n0
� 3

n2
0

and g(2) <
1
n0

,

n3
0 �

g(2)n4
0

2
, if g(2) � 3

n0
� 3

n2
0

and g(2) � 1
n0

,

(A4)

Pg(n0, g(3))=
n5

0

2

8>>>>>>>>>>><>>>>>>>>>>>:

2
n2

0

� 1
n0

+
n0g(3)

6
, if g(3) <

6 � 6n0

n3
0 � 3n0

,

�g(3)

n0
+

1
n0

+
n0g(3)

2
, if g(3) � 6 � 6n0

n3
0 � 3n0

and n0 �
p

3 ,

2
n2

0

� 1
n0

+
n0g(3)

6
, if g(3) � 6 � 6n0

n3
0 � 3n0

and n0 <
p

3 ,

(A5)

Pg(g(2))=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

2g(2)
✓✓
�12
p

9�12g(2)+16
p

1�2g(2)+75
◆
g(2)+63

p
9�12g(2)�56

p
1�2g(2)�190

◆
�81
p

9�12g(2)+48
p

1�2g(2)+195

60(g(2))4
, if 0  g(2)  1

2 ,

2g(2)
✓
�3

✓
4
p

9�12g(2)�16
p

4�6g(2)+75
◆
g(2)+63

p
9�12g(2)�224

p
4�6g(2)+370

◆
�81
p

9�12g(2)+256
p

4�6g(2)�271

60(g(2))4
, if 1

2 < g(2)  2
3 ,

2
p

9�12g(2)(21�4g(2))g(2)�27
p

9�12g(2)+5

10(g(2))4
, if 2

3 < g(2)  3
4 ,

1
2(g(2))4

if g(2) > 3
4 .

(A6)
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APPENDIX B: UPPER BOUNDARIES FOR g(k ) IN HN

Proposition 1. Given some HN , for every pair G(k 1) and G(k ) with k N, the inequality (N
� k + 1)!G(k�1) � (N � k)!G(k) is satisfied. Subsequently, it holds that 0!G(N)  1!G(N�1)  · · ·  (N
� 3)!G(3)  (N � 2)!G(2).

Since these observables can be expressed as

G(k�1) =

NX

n=k�1

n!
(n � k + 1)!

Pn , (B1a)

G(k) =

NX

n=k

n!
(n � k)!

Pn , (B1b)

it follows that

G(k�1) � (N � k)!
(N � k + 1)!

G(k) = (k � 1)!Pk�1 +
NX

n=k

 
1

(n � k + 1)!
� (N � k)!

(N � k + 1)!(n � k)!
�
!

n!Pn . (B2)

The term in parentheses in the summation is always greater than 0 and is equal to 0 only if
n = N. Therefore, the right side of the last equation is greater than 0 as well,

G(k�1) � (N � k)!
(N � k + 1)!

G(k) � 0 , (B3)

i.e., (N � k + 1)!G(k�1) � (N � k)!G(k).

Proposition 2. In every Hilbert space HN , g(2) admits an upper boundary that is given by N�1
n0

.

From the definition for n0 =
PN

n=0 nPn and G(2) =
PN

n=0 n(n� 1)Pn in HN , we find, multiplying n0
by N 1,

NX

n=0

n(N � 1)Pn = (N � 1)P1 + · · · + N(N � 1)PN . (B4)

Subtracting G(2) from expression (B4) leads to
PN

n=0 n(N � n)Pn. This is always greater than 0 and
only equal if every term of the summation is null since all of them are positive (remembering that
1 � Pn � 0). Therefore

(N � 1)n0 �G(2) , (B5)

or since G(2) = n2
0g(2),

g(2)  N � 1
n0

. (B6)

Finally, g(2) can reach its upper boundary only if every Pn vanishes except P0 and PN , i.e., when
the corresponding state is a “Coin state,” cf. Eq. (23). Assuming both propositions, we can infer that

G(k)  (N � 2)!
(N � k)!

G(2) . (B7)

Furthermore, as G(k ) can be written as nk
0g(k) and from Eq. (B6), we obtain

g(k)  (N � 2)!
(N � k)!

g(2)

nk�2
0

 (N � 1)!
(N � k)!

1

nk�1
0

. (B8)
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